
© 2020 Arm Limited (or its affiliates)

Optimizing Roblox:
Vulkan Best Practices

for Mobile Developers

Jose Emilio Munoz-Lopez (Senior Software Engineer, Arm)

Arseny Kapoulkine (Technical Fellow, Roblox)



2 © 2020 Arm Limited (or its affiliates)

Agenda

• Introduction

• Vulkan GPU best practices
• Load/Store operations
• Vulkan subpasses
• Pipeline barriers
• MSAA

• Roblox CPU optimizations
• Command buffer management
• Render passes
• Pipeline state
• Descriptor management

• Further reading



3 © 2020 Arm Limited (or its affiliates)3 © 2020 Arm Limited (or its affiliates)

Arm: The Mobile Game Industry’s Architecture of Choice

Arm-based Cortex CPUs 
shipped in 2019*

23+ bn

Arm-based Mali GPUs 
shipped in 2019

Over 1bn

Ecosystem Partners

1000+

3 © 2020 Arm Limited (or its affiliates)

of the world’s population uses 
Arm technology

70%

*As reported to Arm in 2019 calendar by partners



© 2020 Arm Limited (or its affiliates)

Vulkan Samples



5 © 2020 Arm Limited (or its affiliates)

Experiment on a mobile-optimized, multi-platform framework

Vulkan samples

Analyze countersRun samples Read tutorials

https://github.com/KhronosGroup/Vulkan-Samples

https://github.com/KhronosGroup/Vulkan-Samples


6 © 2020 Arm Limited (or its affiliates)



7 © 2020 Arm Limited (or its affiliates)



8 © 2020 Arm Limited (or its affiliates)



9 © 2020 Arm Limited (or its affiliates)

Framework

• Platform independent (Android, Linux, Mac and Windows)

• Maintains a close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-Cross)

• Automate creation of Vulkan objects:

– VkRenderPass

– VkFramebuffer

– VkPipelineLayout

– VkDescriptorSetLayout

• Load 3D models (glTF 2.0)

• Internal scene graph



10 © 2020 Arm Limited (or its affiliates)

The graphics pipeline

Rasterization

Alpha Blend

1

2

0

1

20

f

f f

f f f f

f f f f f

Fragment 
Processing

Vertex Processing



11 © 2020 Arm Limited (or its affiliates)

Immediate mode GPUs

Geometry Input 
Data

Textures

Framebuffer

Color

Depth

FIFO

GPUMain memory

Read-Modify-Write for 
ZS testing

Read-Modify-Write for 
blending

Fragment 
Processing

Vertex Processing



12 © 2020 Arm Limited (or its affiliates)

Geometry 
Intermediate

Tiled GPUs

Geometry Input 
Data

Textures

Framebuffer

Color

Depth

GPUMain memory

Write on tile completion

Fragment 
Processing

Small SRAM

Local SRAM access for 
ZS testing and blending

Vertex Processing

Tiling



13 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing Rasterization



14 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Attachments



15 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Attachments



16 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Attachments

LOAD_OP STORE_OP



17 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Attachments

LOAD_OP

STORE_OP

LOAD_OP

STORE_OP



© 2020 Arm Limited (or its affiliates)

Load/Store operations



19 © 2020 Arm Limited (or its affiliates)

Load operations

• loadOp operations define how to initialize memory at the start of a render pass

• Clear or invalidate each attachment at the start of a render pass using LOAD_OP_CLEAR
or LOAD_OP_DONT_CARE on mobile

• Do not clear an attachment inside a render pass using vkCmdClearAttachments()

LOAD_OP
_CLEAR

LOAD_OP_
DONT_CARE

LOAD_OP
_LOAD

VkAttachmentDescription color_attachment = {}; 
color_attachment.format = VK_FORMAT_B8G8R8A8_SRGB;
color_attachment.samples = VK_SAMPLE_COUNT_1_BIT;

color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;



20 © 2020 Arm Limited (or its affiliates)

Store operations

• storeOp operations define what is written back to main memory at the end of a pass

• If they are not going to be used further, ensure that the contents are invalidated at the 
end of the render pass using STORE_OP_DONT_CARE on mobile

STORE_OP_
DONT_CARE

STORE_OP
_STORE

VkAttachmentDescription depth_attachment = {}; 
depth_attachment.format = VK_FORMAT_D32_SFLOAT;
depth_attachment.samples = VK_SAMPLE_COUNT_1_BIT;

depth_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depth_attachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;



21 © 2020 Arm Limited (or its affiliates)

Geometry 
Intermediate

Tiled GPUs

Geometry Input 
Data

Textures

Framebuffer

Color

GPUMain memory

Write on tile completion

Fragment 
Processing

Small SRAM

Local SRAM access for 
ZS testing and blending

Vertex Processing

Tiling

Depth



22 © 2020 Arm Limited (or its affiliates)

Transient attachments

• Image usage flags: TRANSIENT_ATTACHMENT

• This tells the GPU that it can be used as a transient attachment

• It will only live for the duration of a single render-pass

• Additionally, it can be backed by LAZILY_ALLOCATED memory

• This way a tile-based renderer may avoid allocating external memory for it

VkImageCreateInfo image_info{VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO};
image_info.flags = flags;
image_info.imageType = type;
image_info.format = format;
image_info.extent = extent;
image_info.samples = sample_count;
image_info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT;

VmaAllocation memory;
VmaAllocationCreateInfo memory_info{};
memory_info.usage = memory_usage;
memory_info.preferredFlags = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;

auto result = vmaCreateImage(device.get_memory_allocator(), &image_info, &memory_info, &handle, &memory, nullptr);



23 © 2020 Arm Limited (or its affiliates)

reduction in external read 
bytes with LOAD_OP_CLEAR

36%

reduction in external write bytes 
with STORE_OP_DONT_CARE

62%

Load/Store operations sample

reduction in fragment cycles 
with LOAD_OP_CLEAR

7%
*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination



© 2020 Arm Limited (or its affiliates)

Subpasses



25 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Attachments



26 © 2020 Arm Limited (or its affiliates)

Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Fragment 
Processing

Vertex Processing

Subpass

Attachments



27 © 2020 Arm Limited (or its affiliates)

Multipass deferred

Fragment 
Processing

Vertex Processing

Renderpass

Subpass

Fragment 
Processing

Vertex Processing

Subpass

Attachments



28 © 2020 Arm Limited (or its affiliates)

Multipass deferred

G-buffer

Renderpass

Subpass

Attachments

Lighting

Subpass



29 © 2020 Arm Limited (or its affiliates)

Multipass deferred

G-buffer

Renderpass

Subpass

Transient 
attachments

Lighting

Subpass

LOAD_OP_
CLEAR

STORE_OP_
DONT_CARE



30 © 2020 Arm Limited (or its affiliates)

Subpass fusion

• We can express a per-pixel dependency between G-Buffer and Lighting subpasses

• Subpass information is known ahead of time (VkRenderPass)

• Driver can merge two or more sub-passes into one Renderpass if they have
• BY_REGION dependencies
• no external side effects which might prevent fusing

• vkCmdNextSubpass() essentially becomes a no-op

• The G-Buffer is transient, saving a lot of external memory bandwidth

• Special image type in SPIR-V, use subpassInput and subpassLoad() in GLSL

• Extension in GLES (PLS) now core functionality in Vulkan

VkSubpassDependency subpassDependency = {};
subpassDependency.srcSubpass = 0;
subpassDependency.dstSubpass = 1;

subpassDependency.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;



31 © 2020 Arm Limited (or its affiliates)

Subpasses sample

reduction in external 
read bytes

45%

reduction in external 
write bytes

56%

*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination



© 2020 Arm Limited (or its affiliates)

Pipeline barriers



33 © 2020 Arm Limited (or its affiliates)

Multipass deferred

G-buffer

Renderpass

Subpass

Lighting

Subpass

dependency

Attachments



34 © 2020 Arm Limited (or its affiliates)

Pipeline stages
typedef enum VkPipelineStageFlagBits {

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT = 0x01000000,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000,
VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX = 0x00020000,
VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV = 0x00400000,
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV = 0x00200000,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV = 0x02000000,
VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV = 0x00080000,
VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV = 0x00100000,
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000,
VK_PIPELINE_STAGE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

} VkPipelineStageFlagBits;



35 © 2020 Arm Limited (or its affiliates)

Pipeline stages
typedef enum VkPipelineStageFlagBits {

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT = 0x01000000,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000,
VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX = 0x00020000,
VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV = 0x00400000,
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV = 0x00200000,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV = 0x02000000,
VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV = 0x00080000,
VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV = 0x00100000,
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000,
VK_PIPELINE_STAGE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

} VkPipelineStageFlagBits;



36 © 2020 Arm Limited (or its affiliates)

The graphics pipeline

Rasterization

Alpha Blend

f

f f

f f f f

f f f f f

Fragment 
Processing

1

2

0

1

20

Vertex ProcessingTOP_OF_PIPE

Geometry

VERTEX_INPUT
VERTEX_SHADER

Fragment

EARLY_FRAGMENT_TEST
FRAGMENT_SHADER

LATE_FRAGMENT_TEST
COLOR_ATTACHMENT_OUTPUT

BOTTOM_OF_PIPE



37 © 2020 Arm Limited (or its affiliates)

The graphics pipeline

TOP_OF_PIPE

Geometry

VERTEX_INPUT
VERTEX_SHADER

Fragment

EARLY_FRAGMENT_TEST
FRAGMENT_SHADER

LATE_FRAGMENT_TEST
COLOR_ATTACHMENT_OUTPUT

BOTTOM_OF_PIPE



38 © 2020 Arm Limited (or its affiliates)

Pipeline barriers

• A barrier splits the command stream in two

• It will synchronize everything before, and after the barrier

• srcStageMask specifies what we are waiting for

• dstStageMask specifies what stages will wait

TOP_OF_PIPE

Geometry

VERTEX_INPUT
VERTEX_SHADER

Fragment

EARLY_FRAGMENT_TEST
FRAGMENT_SHADER

LATE_FRAGMENT_TEST
COLOR_ATTACHMENT_OUTPUT

BOTTOM_OF_PIPE

void vkCmdPipelineBarrier(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers

);



39 © 2020 Arm Limited (or its affiliates)

Pipelining: avoid BOTTOM->TOP dependencies

CPU

Vertex

Fragment

vkCmdPipelineBarrier(
command_buffer,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0,
0, nullptr,
0, nullptr,
1, &image_memory_barrier)



40 © 2020 Arm Limited (or its affiliates)

Pipelining: avoid BOTTOM->TOP dependencies

CPU

Vertex

Fragment

vkCmdPipelineBarrier(
command_buffer,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &image_memory_barrier)



41 © 2020 Arm Limited (or its affiliates)

Pipeline barriers sample

reduction in frame time

Up to 56%

*counters may be affected by screen recording. See this presentation by Samsung GameDev and Croteam

https://youtu.be/CE8lvvPWAwQ?t=517


© 2020 Arm Limited (or its affiliates)

MSAA



43 © 2020 Arm Limited (or its affiliates)

Multisample anti-aliasing (MSAA)



44 © 2020 Arm Limited (or its affiliates)

Multisample anti-aliasing (MSAA)



45 © 2020 Arm Limited (or its affiliates)

Multisample anti-aliasing (MSAA)



46 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

No MSAA



47 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

No MSAA



48 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

No MSAA



49 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

MSAA



50 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

MSAA



51 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

MSAA



52 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

MSAA



53 © 2020 Arm Limited (or its affiliates)

+ + + + +

+ + + + +

+ + + + +

+ + + + +

MSAA



54 © 2020 Arm Limited (or its affiliates)

Geometry 
Intermediate

Tiled GPUs

Geometry Input 
Data

Textures

Framebuffer

Color

Depth

GPUMain memory

Write on tile completion

Fragment 
Processing

Small SRAM

Local SRAM access for 
ZS testing and blending

Vertex Processing

Tiling



55 © 2020 Arm Limited (or its affiliates)

Resolve attachments

• Multisampled image may be transient
• loadOp = LOAD_OP_CLEAR
• storeOp = STORE_OP_DONT_CARE
• Use LAZILY_ALLOCATED memory

• Use pResolveAttachments in a subpass to automatically resolve a multisampled
color buffer into a single-sampled color buffer

• Avoid vkCmdResolveImage(): this has a significant negative impact on bandwidth 
and performance

• With VK_KHR_depth_stencil_resolve (core in Vulkan 1.2) the depth attachment 
may also be resolved in a similar fashion



56 © 2020 Arm Limited (or its affiliates)

4X Depth

GPU

Main memory

Resolve on tile writeback (best practice)

4X Color

Swapchain

Write-back resolve

Avoidable 
load/store

Transient
Necessary 
load/store

Scene Renderpass



57 © 2020 Arm Limited (or its affiliates)

Separate Resolve Pass

GPU

Main memory

Resolve in a separate pass (avoid!)

4X Color

4X Color

vkCmdResolveImage

Swapchain

Swapchain

4X Color

Avoidable 
load/store

Transient
Necessary 
load/store

4X Depth

Scene Renderpass



58 © 2020 Arm Limited (or its affiliates)

MSAA sample

*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination

reduction in external 
read bytes

261%

reduction in external 
write bytes

440%



© 2020 Arm Limited (or its affiliates)

Optimizing Roblox

Reducing CPU overhead of render dispatch



60 © 2020 Arm Limited (or its affiliates)

What is Roblox?

• Online multiplayer game creation platform
• 100M+ MAU, 2.5M+ CCU
• Windows, macOS, iOS, Android, Xbox One
• Direct3D 9, Direct3D 11, OpenGL 2/3, OpenGL ES 2/3, Metal, Vulkan

• All content is user generated
• A lot of content creators with a lot of varied content!
• We don’t police quality or performance
• Optimizing engine makes all content run better

• Historically geometry and draw call heavy
• Levels are often built from basic primitives



61 © 2020 Arm Limited (or its affiliates)



62 © 2020 Arm Limited (or its affiliates)

Optimizing draw call dispatch

• Vulkan is implemented on top of a common rendering interface
• How can we get maximum performance with reasonable effort?

• Focus on steady state performance
• Cache everything that is easy to cache
• Assume regular frame structure

• Minimize abstraction overhead
• Find a compromise between ease of use and performance
• Optimize the implementation as much as possible

• Threading-friendly implementation
• Allow each thread to record draw calls in isolation



63 © 2020 Arm Limited (or its affiliates)

Optimizing draw call dispatch

// 1. Command buffer management
DeviceContext* ctx = device->createCommandBuffer();

PassClear passClear;
passClear.mask = Framebuffer::Mask_Color0;

// 2. Render passes
ctx‐>beginPass(fb, 0, Framebuffer::Mask_Color0, &passClear);

// 3. Pipeline state
ctx‐>bindProgram(program.get());

// 4. Descriptor management
ctx‐>bindBuffer(0, globalDataBuffer.get());
ctx‐>bindBufferData(1, &params, sizeof(params));
ctx‐>bindTexture(0, lightMap, SamplerState::Filter_Linear);

// 5. General optimizations
ctx‐>draw(geometry, Geometry::Primitive_Triangles, 0, count);

ctx‐>endPass();

device->commitCommandBuffer(ctx);



64 © 2020 Arm Limited (or its affiliates)

Command buffer management

• Deceptively simple…
• createCommandBuffer() => vkAllocateCommandBuffers
• commitCommandBuffer() => vkQueueSubmit

• … but actually complicated
• Each thread needs a separate VkCommandPool to allocate from
• VkCommandPool can not be used if command buffers allocated from it are in flight
• vkAllocateCommandBuffers is not free
• vkFreeCommandBuffers doesn’t always recycle command memory
• vkQueueSubmit can be expensive

Arm sample
Allocation and management 

of command buffers

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/command_buffer_usage/command_buffer_usage_tutorial.md#Recycling-strategies


65 © 2020 Arm Limited (or its affiliates)

Command buffer management

• Pool of command pools
• createCommandBuffer() steals a VkCommandPool (or creates one) under a critical section
• We never free command buffers, and reuse allocated ones

• Batched command buffer submissions
• commitCommandBuffer() adds the command buffer to frame list and returns the pool
• A single vkQueueSubmit at the end of the frame with submitCount = 1

• Command pool recycling
• After recording a frame we remove all pools with pending command buffers from global pool
• After a frame has completed, we put all pools back into global pool
• Don’t forget to run vkResetCommandPool!

– This automatically resets all allocated command buffers and puts them into ready state



66 © 2020 Arm Limited (or its affiliates)

Render passes

• Many complex topics!
• Load/store actions
• Image layout transitions
• Pipeline barriers

• No global view of the frame
• Immediate mode command submission
• Each thread records commands in isolation

• We specify all information in beginPass() precisely
• A full set of textures to render to (color/depth)
• Which framebuffer textures need to be loaded from memory?
• Which framebuffer textures need to be stored to memory?
• Which framebuffer textures need to be cleared with what initial data?
• Do we need to do MSAA resolve in endPass() and if so, where?

Arm samples
Load/store actions
Layout transitions

Pipeline barriers
Subpasses

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/render_passes/render_passes_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/layout_transitions/layout_transitions_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/pipeline_barriers/pipeline_barriers_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/render_subpasses/render_subpasses_tutorial.md


67 © 2020 Arm Limited (or its affiliates)

Render passes

• Lazily create / cache VkRenderPass / VkFramebuffer
• This includes load/store actions, image layout transitions, barriers and resolve!
• Load/store actions are specified explicitly, the rest is inferred

• Inferring image layout transitions
• No concept of “current” resource state – not threading-friendly
• Instead, “default” resource state – for each resource, what state is it in between passes?

– For textures with shader access this is SHADER_READ_ONLY
– For textures without shader access this is COLOR_ATTACHMENT_OPTIMAL (or DEPTH)
– For read/write textures this is GENERAL

• All image layout transitions are performed at the pass boundary – no in-pass synchronization!
• All image layout transitions are guided by load/store masks

– An image that is not loaded is transitioned from UNDEFINED to COLOR_ATTACHMENT
– An image that is not stored is kept in COLOR_ATTACHMENT (or DEPTH_ATTACHMENT)

• Inferring pipeline barriers
• Default to VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
• Extra annotations required to read textures from vertex/compute



68 © 2020 Arm Limited (or its affiliates)

Pipeline state

• Lazily create / cache VkPipeline objects
• To fix frame stalls, use VkPipelineCache serialized to disk and cache pre-warming*

• Automatically filter redundant binds – cheap!

• Use lock-free read / locked write cache for pipeline states
• Two hash tables from Key to State: read-only and read-write
• Read-write table gets merged into the read-only table at the end of the frame

// do we have the key in readMap? thread-safe since readMap is only
// ever written to from flush() that runs exclusively to all tasks
if (V* rv = readMap.find(key)) {

return rv;
}
mutex.lock();
// do we have the key in writeMap? thread-safe since we locked mutex
if (V* wv = writeMap.find(key)) {

V value = *wv;
mutex.unlock();
return value;

}
// create the cache entry and add it to writeMap

Arm sample
Pipeline cache

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/pipeline_cache/pipeline_cache_tutorial.md


69 © 2020 Arm Limited (or its affiliates)

Descriptor management

• Slot-based binding model

• This should look familiar and yet it’s not
• Coupled textures and samplers (OpenGL )
• Only two namespaces, buffers and textures

– No per-stage namespaces (constant buffer #3 is bound to the entire pipeline)
– No difference between constant buffers and shader storage buffers
– No difference between read-write (UAV) slots and read slots

• An option to specify constant buffer data
• Works surprisingly well for Metal/Vulkan!

• Descriptor set layouts configured from shader reflection metadata
• Validate compatibility between stages, e.g. uniform buffer #5 must be uniform in VS & FS
• Note that we use at most 2 sets (buffers & textures)!

• Before each draw/dispatch we lazily allocate/update descriptor sets

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferRw(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);
void bindTexture(unsigned int slot, Texture* texture, SamplerState state);
void bindTextureRw(unsigned int slot, Texture* texture);

Arm sample
Descriptor 

management

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/descriptor_management/descriptor_management_tutorial.md


70 © 2020 Arm Limited (or its affiliates)

Descriptor management: configuring pools

• A pool per shader pipeline object
• We know the number of textures/buffers each pipeline uses, can configure pools optimally
• E.g. shadow map opaque pipeline: 1024 sets, 0 textures, 2*1024 buffers
• E.g. scene opaque pipeline: 1024 sets, 8*1024 textures, 3*1024 buffers
• A lot of space wasted on rarely used pipelines (postfx), more expensive to switch pipelines
• Very hard to manage across multiple threads

• One type of pool, configured using worst-case descriptor count
• E.g. one VkDescriptorPool has 1024 sets, 16*1024 textures, 8*1024 buffers
• Simple – just one type of pool!
• A lot of space wasted because the ratio of sets:textures:buffers varies

• Settled on one type of pool, configured for “average” usecase
• sets:textures:buffers ratios determined by collecting data on typical levels
• Simple, little space wasted in common case
• Non-trivial space savings – tens of megabytes on moderate levels



71 © 2020 Arm Limited (or its affiliates)

Descriptor management: allocate / update / bind

• Allocating the sets: a pool of pools
• If the current pool has space, allocate a descriptor set in this pool (free-threaded)
• Otherwise, get a pool out of the global “pool of pools” (requires a lock)
• Recycle pools at the end of the frame (never free descriptor sets, vkResetDescriptorPool instead)

• Lazy update / bind
• Only update the set with changes (e.g. texture-only changes only need to update one set)
• Often don’t need to rebind sets when pipeline changes (~50% fewer buffer descriptor updates)
• Do not use descriptor set copying for partial updates!
• Descriptor templates from Vulkan 1.1 reduce CPU cost further

• Constant data update
• Most of our per-frame constant data is small and dynamic
• We sub-allocate it from a large buffer in bindBufferData()
• Instead of allocating a new buffer descriptor every time, use pDynamicOffsets



72 © 2020 Arm Limited (or its affiliates)

General optimizations

• The driver is much slimmer than a typical GL driver
• This surfaces things that were trivial/unnoticeable before!

• Don’t call vk* functions unless you need to
• Cache everything that’s easy to cache, filter redundant state bindings

• Aggressively eliminate cache misses
• Reduce allocations and indirections in your abstraction
• E.g. we use GeometryVulkan that is similar to OpenGL VAO – struct with all geometry state

• Call most functions through pointers obtained via vkGetDeviceProcAddr
• volk (github.com/zeux/volk) loader does this for us; a few % wins on some drivers

https://github.com/zeux/volk


73 © 2020 Arm Limited (or its affiliates)

Results

• Seeing 2x-3x CPU performance gains across all vendors vs GLES
• End-to-end render frame, real-world contents

• Mobile test level @ 840 draw calls, single core
• 2.4 GHz Cortex-A73, Mali-G72
• GLES: 38 ms😱
• Vulkan single-core: 13 ms

• Good multi-core scaling as well!
• Beware big vs LITTLE



© 2020 Arm Limited (or its affiliates)

References



75 © 2020 Arm Limited (or its affiliates)

Further reading

• Synchronization Examples by Tobias Hector

• Yet another blog explaining Vulkan synchronization by Hans-Kristian Arntzen

• GPU Framebuffer Memory: Understanding Tiling, Samsung GameDev

• Writing an efficient Vulkan renderer, GPU Zen 2, by Arseny Kapoulkine

• Vulkan Guide, Khronos Group

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
https://developer.samsung.com/galaxy-gamedev/resources/articles/gpu-framebuffer.html
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://github.com/KhronosGroup/Vulkan-Guide


76 © 2020 Arm Limited (or its affiliates)

Vulkan samples
https://github.com/KhronosGroup/Vulkan-Samples

Sascha Willems

• API examples
• Compute shader N-body simulation
• Dynamic uniform buffers
• High Dynamic Range rendering
• Instanced mesh rendering
• Dynamic terrain tessellation
• Texture loading and display
• Runtime mipmap generation

• Extension samples
• VK_EXT_conservative_rasterization
• VK_KHR_push_descriptor
• VK_NV_ray_tracing

Arm

• Performance samples with tutorials
• AFBC
• Command buffer management
• Constant data
• Descriptor and buffer management
• Impact of vkDeviceWaitIdle()
• Layout transitions
• Load/store operations
• MSAA
• Multi-threaded command buffer recording
• N-buffering and presentation modes
• Pipeline barriers
• Pipeline cache
• Pre-rotation
• Specialization constants
• Subpass merging and G-buffer size

https://github.com/KhronosGroup/Vulkan-Samples


© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)


