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Arm: The Mobile Game Industry’s Architecture of Choice

Arm-based Cortex CPUs 
shipped in 2019*

23+ bn

Arm-based Mali GPUs 
shipped in 2019

Over 1bn

Ecosystem Partners

1000+
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of the world’s population uses 
Arm technology

70%

*As reported to Arm in 2019 calendar by partners
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Vulkan Samples
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Experiment on a mobile-optimized, multi-platform framework

Vulkan samples

Analyze countersRun samples Read tutorials

https://github.com/KhronosGroup/Vulkan-Samples

https://github.com/KhronosGroup/Vulkan-Samples
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Framework

• Platform independent (Android, Linux, Mac and Windows)

• Maintains a close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-Cross)

• Automate creation of Vulkan objects:

– VkRenderPass

– VkFramebuffer

– VkPipelineLayout

– VkDescriptorSetLayout

• Load 3D models (glTF 2.0)

• Internal scene graph
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The graphics pipeline
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Immediate mode GPUs
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Textures

Framebuffer

Color

Depth
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Read-Modify-Write for 
blending

Fragment 
Processing

Vertex Processing
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Geometry 
Intermediate

Tiled GPUs

Geometry Input 
Data
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Framebuffer

Color
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GPUMain memory

Write on tile completion
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Processing
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Local SRAM access for 
ZS testing and blending

Vertex Processing

Tiling
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Renderpasses and subpasses

Fragment 
Processing

Vertex Processing Rasterization
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Renderpasses and subpasses

Fragment 
Processing

Vertex Processing

Renderpass

Attachments
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Renderpasses and subpasses
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Renderpasses and subpasses
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Processing

Vertex Processing

Renderpass
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Attachments

LOAD_OP STORE_OP
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Renderpasses and subpasses
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Load/Store operations
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Load operations

• loadOp operations define how to initialize memory at the start of a render pass

• Clear or invalidate each attachment at the start of a render pass using LOAD_OP_CLEAR
or LOAD_OP_DONT_CARE on mobile

• Do not clear an attachment inside a render pass using vkCmdClearAttachments()

LOAD_OP
_CLEAR

LOAD_OP_
DONT_CARE

LOAD_OP
_LOAD

VkAttachmentDescription color_attachment = {}; 
color_attachment.format = VK_FORMAT_B8G8R8A8_SRGB;
color_attachment.samples = VK_SAMPLE_COUNT_1_BIT;

color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
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Store operations

• storeOp operations define what is written back to main memory at the end of a pass

• If they are not going to be used further, ensure that the contents are invalidated at the 
end of the render pass using STORE_OP_DONT_CARE on mobile

STORE_OP_
DONT_CARE

STORE_OP
_STORE

VkAttachmentDescription depth_attachment = {}; 
depth_attachment.format = VK_FORMAT_D32_SFLOAT;
depth_attachment.samples = VK_SAMPLE_COUNT_1_BIT;

depth_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depth_attachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
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Geometry 
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Tiled GPUs
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Color

GPUMain memory

Write on tile completion
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ZS testing and blending
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Transient attachments

• Image usage flags: TRANSIENT_ATTACHMENT

• This tells the GPU that it can be used as a transient attachment

• It will only live for the duration of a single render-pass

• Additionally, it can be backed by LAZILY_ALLOCATED memory

• This way a tile-based renderer may avoid allocating external memory for it

VkImageCreateInfo image_info{VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO};
image_info.flags = flags;
image_info.imageType = type;
image_info.format = format;
image_info.extent = extent;
image_info.samples = sample_count;
image_info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT;

VmaAllocation memory;
VmaAllocationCreateInfo memory_info{};
memory_info.usage = memory_usage;
memory_info.preferredFlags = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;

auto result = vmaCreateImage(device.get_memory_allocator(), &image_info, &memory_info, &handle, &memory, nullptr);
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reduction in external read 
bytes with LOAD_OP_CLEAR

36%

reduction in external write bytes 
with STORE_OP_DONT_CARE

62%

Load/Store operations sample

reduction in fragment cycles 
with LOAD_OP_CLEAR

7%
*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination
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Subpasses
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Renderpasses and subpasses
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Multipass deferred
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Multipass deferred
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Multipass deferred

G-buffer
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Subpass fusion

• We can express a per-pixel dependency between G-Buffer and Lighting subpasses

• Subpass information is known ahead of time (VkRenderPass)

• Driver can merge two or more sub-passes into one Renderpass if they have
• BY_REGION dependencies
• no external side effects which might prevent fusing

• vkCmdNextSubpass() essentially becomes a no-op

• The G-Buffer is transient, saving a lot of external memory bandwidth

• Special image type in SPIR-V, use subpassInput and subpassLoad() in GLSL

• Extension in GLES (PLS) now core functionality in Vulkan

VkSubpassDependency subpassDependency = {};
subpassDependency.srcSubpass = 0;
subpassDependency.dstSubpass = 1;

subpassDependency.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
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Subpasses sample

reduction in external 
read bytes

45%

reduction in external 
write bytes

56%

*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination
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Pipeline barriers
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Pipeline stages
typedef enum VkPipelineStageFlagBits {

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT = 0x01000000,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000,
VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX = 0x00020000,
VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV = 0x00400000,
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV = 0x00200000,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV = 0x02000000,
VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV = 0x00080000,
VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV = 0x00100000,
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000,
VK_PIPELINE_STAGE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

} VkPipelineStageFlagBits;
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Pipeline stages
typedef enum VkPipelineStageFlagBits {

VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT = 0x01000000,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT = 0x00040000,
VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX = 0x00020000,
VK_PIPELINE_STAGE_SHADING_RATE_IMAGE_BIT_NV = 0x00400000,
VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_NV = 0x00200000,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_NV = 0x02000000,
VK_PIPELINE_STAGE_TASK_SHADER_BIT_NV = 0x00080000,
VK_PIPELINE_STAGE_MESH_SHADER_BIT_NV = 0x00100000,
VK_PIPELINE_STAGE_FRAGMENT_DENSITY_PROCESS_BIT_EXT = 0x00800000,
VK_PIPELINE_STAGE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

} VkPipelineStageFlagBits;
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The graphics pipeline

Rasterization

Alpha Blend

f

f f

f f f f

f f f f f

Fragment 
Processing

1

2

0

1

20

Vertex ProcessingTOP_OF_PIPE

Geometry

VERTEX_INPUT
VERTEX_SHADER

Fragment

EARLY_FRAGMENT_TEST
FRAGMENT_SHADER

LATE_FRAGMENT_TEST
COLOR_ATTACHMENT_OUTPUT

BOTTOM_OF_PIPE



37 © 2020 Arm Limited (or its affiliates)

The graphics pipeline

TOP_OF_PIPE
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Pipeline barriers

• A barrier splits the command stream in two

• It will synchronize everything before, and after the barrier

• srcStageMask specifies what we are waiting for

• dstStageMask specifies what stages will wait

TOP_OF_PIPE

Geometry

VERTEX_INPUT
VERTEX_SHADER

Fragment

EARLY_FRAGMENT_TEST
FRAGMENT_SHADER

LATE_FRAGMENT_TEST
COLOR_ATTACHMENT_OUTPUT

BOTTOM_OF_PIPE

void vkCmdPipelineBarrier(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers

);
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Pipelining: avoid BOTTOM->TOP dependencies

CPU

Vertex

Fragment

vkCmdPipelineBarrier(
command_buffer,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0,
0, nullptr,
0, nullptr,
1, &image_memory_barrier)
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Pipelining: avoid BOTTOM->TOP dependencies

CPU

Vertex

Fragment

vkCmdPipelineBarrier(
command_buffer,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &image_memory_barrier)
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Pipeline barriers sample

reduction in frame time

Up to 56%

*counters may be affected by screen recording. See this presentation by Samsung GameDev and Croteam

https://youtu.be/CE8lvvPWAwQ?t=517
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MSAA
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Multisample anti-aliasing (MSAA)
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Multisample anti-aliasing (MSAA)
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Multisample anti-aliasing (MSAA)
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Resolve attachments

• Multisampled image may be transient
• loadOp = LOAD_OP_CLEAR
• storeOp = STORE_OP_DONT_CARE
• Use LAZILY_ALLOCATED memory

• Use pResolveAttachments in a subpass to automatically resolve a multisampled
color buffer into a single-sampled color buffer

• Avoid vkCmdResolveImage(): this has a significant negative impact on bandwidth 
and performance

• With VK_KHR_depth_stencil_resolve (core in Vulkan 1.2) the depth attachment 
may also be resolved in a similar fashion
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4X Depth

GPU

Main memory

Resolve on tile writeback (best practice)

4X Color

Swapchain

Write-back resolve

Avoidable 
load/store

Transient
Necessary 
load/store

Scene Renderpass
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Separate Resolve Pass

GPU

Main memory

Resolve in a separate pass (avoid!)

4X Color

4X Color

vkCmdResolveImage

Swapchain

Swapchain

4X Color

Avoidable 
load/store

Transient
Necessary 
load/store

4X Depth

Scene Renderpass
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MSAA sample

*counters may be affected by screen recording and other factors such as framebuffer compression and transaction elimination

reduction in external 
read bytes

261%

reduction in external 
write bytes

440%
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Optimizing Roblox

Reducing CPU overhead of render dispatch
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What is Roblox?

• Online multiplayer game creation platform
• 100M+ MAU, 2.5M+ CCU
• Windows, macOS, iOS, Android, Xbox One
• Direct3D 9, Direct3D 11, OpenGL 2/3, OpenGL ES 2/3, Metal, Vulkan

• All content is user generated
• A lot of content creators with a lot of varied content!
• We don’t police quality or performance
• Optimizing engine makes all content run better

• Historically geometry and draw call heavy
• Levels are often built from basic primitives
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Optimizing draw call dispatch

• Vulkan is implemented on top of a common rendering interface
• How can we get maximum performance with reasonable effort?

• Focus on steady state performance
• Cache everything that is easy to cache
• Assume regular frame structure

• Minimize abstraction overhead
• Find a compromise between ease of use and performance
• Optimize the implementation as much as possible

• Threading-friendly implementation
• Allow each thread to record draw calls in isolation
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Optimizing draw call dispatch

// 1. Command buffer management
DeviceContext* ctx = device->createCommandBuffer();

PassClear passClear;
passClear.mask = Framebuffer::Mask_Color0;

// 2. Render passes
ctx‐>beginPass(fb, 0, Framebuffer::Mask_Color0, &passClear);

// 3. Pipeline state
ctx‐>bindProgram(program.get());

// 4. Descriptor management
ctx‐>bindBuffer(0, globalDataBuffer.get());
ctx‐>bindBufferData(1, &params, sizeof(params));
ctx‐>bindTexture(0, lightMap, SamplerState::Filter_Linear);

// 5. General optimizations
ctx‐>draw(geometry, Geometry::Primitive_Triangles, 0, count);

ctx‐>endPass();

device->commitCommandBuffer(ctx);
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Command buffer management

• Deceptively simple…
• createCommandBuffer() => vkAllocateCommandBuffers
• commitCommandBuffer() => vkQueueSubmit

• … but actually complicated
• Each thread needs a separate VkCommandPool to allocate from
• VkCommandPool can not be used if command buffers allocated from it are in flight
• vkAllocateCommandBuffers is not free
• vkFreeCommandBuffers doesn’t always recycle command memory
• vkQueueSubmit can be expensive

Arm sample
Allocation and management 

of command buffers

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/command_buffer_usage/command_buffer_usage_tutorial.md#Recycling-strategies
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Command buffer management

• Pool of command pools
• createCommandBuffer() steals a VkCommandPool (or creates one) under a critical section
• We never free command buffers, and reuse allocated ones

• Batched command buffer submissions
• commitCommandBuffer() adds the command buffer to frame list and returns the pool
• A single vkQueueSubmit at the end of the frame with submitCount = 1

• Command pool recycling
• After recording a frame we remove all pools with pending command buffers from global pool
• After a frame has completed, we put all pools back into global pool
• Don’t forget to run vkResetCommandPool!

– This automatically resets all allocated command buffers and puts them into ready state
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Render passes

• Many complex topics!
• Load/store actions
• Image layout transitions
• Pipeline barriers

• No global view of the frame
• Immediate mode command submission
• Each thread records commands in isolation

• We specify all information in beginPass() precisely
• A full set of textures to render to (color/depth)
• Which framebuffer textures need to be loaded from memory?
• Which framebuffer textures need to be stored to memory?
• Which framebuffer textures need to be cleared with what initial data?
• Do we need to do MSAA resolve in endPass() and if so, where?

Arm samples
Load/store actions
Layout transitions

Pipeline barriers
Subpasses

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/render_passes/render_passes_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/layout_transitions/layout_transitions_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/pipeline_barriers/pipeline_barriers_tutorial.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/render_subpasses/render_subpasses_tutorial.md
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Render passes

• Lazily create / cache VkRenderPass / VkFramebuffer
• This includes load/store actions, image layout transitions, barriers and resolve!
• Load/store actions are specified explicitly, the rest is inferred

• Inferring image layout transitions
• No concept of “current” resource state – not threading-friendly
• Instead, “default” resource state – for each resource, what state is it in between passes?

– For textures with shader access this is SHADER_READ_ONLY
– For textures without shader access this is COLOR_ATTACHMENT_OPTIMAL (or DEPTH)
– For read/write textures this is GENERAL

• All image layout transitions are performed at the pass boundary – no in-pass synchronization!
• All image layout transitions are guided by load/store masks

– An image that is not loaded is transitioned from UNDEFINED to COLOR_ATTACHMENT
– An image that is not stored is kept in COLOR_ATTACHMENT (or DEPTH_ATTACHMENT)

• Inferring pipeline barriers
• Default to VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
• Extra annotations required to read textures from vertex/compute
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Pipeline state

• Lazily create / cache VkPipeline objects
• To fix frame stalls, use VkPipelineCache serialized to disk and cache pre-warming*

• Automatically filter redundant binds – cheap!

• Use lock-free read / locked write cache for pipeline states
• Two hash tables from Key to State: read-only and read-write
• Read-write table gets merged into the read-only table at the end of the frame

// do we have the key in readMap? thread-safe since readMap is only
// ever written to from flush() that runs exclusively to all tasks
if (V* rv = readMap.find(key)) {

return rv;
}
mutex.lock();
// do we have the key in writeMap? thread-safe since we locked mutex
if (V* wv = writeMap.find(key)) {

V value = *wv;
mutex.unlock();
return value;

}
// create the cache entry and add it to writeMap

Arm sample
Pipeline cache

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/pipeline_cache/pipeline_cache_tutorial.md
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Descriptor management

• Slot-based binding model

• This should look familiar and yet it’s not
• Coupled textures and samplers (OpenGL )
• Only two namespaces, buffers and textures

– No per-stage namespaces (constant buffer #3 is bound to the entire pipeline)
– No difference between constant buffers and shader storage buffers
– No difference between read-write (UAV) slots and read slots

• An option to specify constant buffer data
• Works surprisingly well for Metal/Vulkan!

• Descriptor set layouts configured from shader reflection metadata
• Validate compatibility between stages, e.g. uniform buffer #5 must be uniform in VS & FS
• Note that we use at most 2 sets (buffers & textures)!

• Before each draw/dispatch we lazily allocate/update descriptor sets

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferRw(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);
void bindTexture(unsigned int slot, Texture* texture, SamplerState state);
void bindTextureRw(unsigned int slot, Texture* texture);

Arm sample
Descriptor 

management

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/performance/descriptor_management/descriptor_management_tutorial.md
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Descriptor management: configuring pools

• A pool per shader pipeline object
• We know the number of textures/buffers each pipeline uses, can configure pools optimally
• E.g. shadow map opaque pipeline: 1024 sets, 0 textures, 2*1024 buffers
• E.g. scene opaque pipeline: 1024 sets, 8*1024 textures, 3*1024 buffers
• A lot of space wasted on rarely used pipelines (postfx), more expensive to switch pipelines
• Very hard to manage across multiple threads

• One type of pool, configured using worst-case descriptor count
• E.g. one VkDescriptorPool has 1024 sets, 16*1024 textures, 8*1024 buffers
• Simple – just one type of pool!
• A lot of space wasted because the ratio of sets:textures:buffers varies

• Settled on one type of pool, configured for “average” usecase
• sets:textures:buffers ratios determined by collecting data on typical levels
• Simple, little space wasted in common case
• Non-trivial space savings – tens of megabytes on moderate levels
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Descriptor management: allocate / update / bind

• Allocating the sets: a pool of pools
• If the current pool has space, allocate a descriptor set in this pool (free-threaded)
• Otherwise, get a pool out of the global “pool of pools” (requires a lock)
• Recycle pools at the end of the frame (never free descriptor sets, vkResetDescriptorPool instead)

• Lazy update / bind
• Only update the set with changes (e.g. texture-only changes only need to update one set)
• Often don’t need to rebind sets when pipeline changes (~50% fewer buffer descriptor updates)
• Do not use descriptor set copying for partial updates!
• Descriptor templates from Vulkan 1.1 reduce CPU cost further

• Constant data update
• Most of our per-frame constant data is small and dynamic
• We sub-allocate it from a large buffer in bindBufferData()
• Instead of allocating a new buffer descriptor every time, use pDynamicOffsets
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General optimizations

• The driver is much slimmer than a typical GL driver
• This surfaces things that were trivial/unnoticeable before!

• Don’t call vk* functions unless you need to
• Cache everything that’s easy to cache, filter redundant state bindings

• Aggressively eliminate cache misses
• Reduce allocations and indirections in your abstraction
• E.g. we use GeometryVulkan that is similar to OpenGL VAO – struct with all geometry state

• Call most functions through pointers obtained via vkGetDeviceProcAddr
• volk (github.com/zeux/volk) loader does this for us; a few % wins on some drivers

https://github.com/zeux/volk
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Results

• Seeing 2x-3x CPU performance gains across all vendors vs GLES
• End-to-end render frame, real-world contents

• Mobile test level @ 840 draw calls, single core
• 2.4 GHz Cortex-A73, Mali-G72
• GLES: 38 ms😱
• Vulkan single-core: 13 ms

• Good multi-core scaling as well!
• Beware big vs LITTLE
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Further reading

• Synchronization Examples by Tobias Hector

• Yet another blog explaining Vulkan synchronization by Hans-Kristian Arntzen

• GPU Framebuffer Memory: Understanding Tiling, Samsung GameDev

• Writing an efficient Vulkan renderer, GPU Zen 2, by Arseny Kapoulkine

• Vulkan Guide, Khronos Group

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
https://developer.samsung.com/galaxy-gamedev/resources/articles/gpu-framebuffer.html
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://github.com/KhronosGroup/Vulkan-Guide
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Vulkan samples
https://github.com/KhronosGroup/Vulkan-Samples

Sascha Willems

• API examples
• Compute shader N-body simulation
• Dynamic uniform buffers
• High Dynamic Range rendering
• Instanced mesh rendering
• Dynamic terrain tessellation
• Texture loading and display
• Runtime mipmap generation

• Extension samples
• VK_EXT_conservative_rasterization
• VK_KHR_push_descriptor
• VK_NV_ray_tracing

Arm

• Performance samples with tutorials
• AFBC
• Command buffer management
• Constant data
• Descriptor and buffer management
• Impact of vkDeviceWaitIdle()
• Layout transitions
• Load/store operations
• MSAA
• Multi-threaded command buffer recording
• N-buffering and presentation modes
• Pipeline barriers
• Pipeline cache
• Pre-rotation
• Specialization constants
• Subpass merging and G-buffer size

https://github.com/KhronosGroup/Vulkan-Samples
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Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה
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