
SPU Render

Arseny “Zeux” Kapoulkine
CREAT Studios

arseny.kapoulkine@gmail.com
http://zeuxcg.org/



2

Introduction

● Smash Cars 2 project

– Static scene of moderate size

– Many dynamic objects

– Multiple render passes

– Totals up to 3000 batches per frame

● PPU render up to 12 ms

– Target – 60 fps :(



3

Introduction



4

Optimization techniques

● PPU code optimizations

– Has been done several times

– Would like PPU time to become ~0

● Static command buffers

– Somewhat restricted

– Culling is unclear

● Move code to SPU



5

Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A



6

Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A



7

Render – “high” level

● Rendering is done on sets of RenderItem

– The sets are already sorted and culled

● RenderItem aggregates:

– SceneNode

– Material

– Shader

– RenderEntity



8

Render – SceneNode

● Transform graph node

– Local transform

– Global transform (derived from local)

● Local transforms are set by misc code

– Animations

– Physics

– Game logic



9

Render – Shader

● Render pipeline setup algorithm

– virtual void apply
● Setups auto-parameters

– Are computed automagically by the system
– WorldViewProjection, ShadowMap, etc.

– virtual void setup
● Setups material

– Material parameters (including textures) 
– Shaders

● 99% objects are of final type HWShader



10

Render – Material

● Container of instance data for Shader

– Data layout description
● Parameter name/type
● Offset in data array

– Data array

– Accessors for name/index (get/set)

– Render states
● Blend, alpha test, depth, cull



11

Render – RenderEntity

● Drawing algorithm

– virtual void render

● Several implementations

– RenderStaticGeometry

– RenderSkinnedGeometry

– RenderMorphedGeometry

– DynamicObject



12

Render – low level

● Cross-platform wrappers

– State setup (with cache)

– Vertex/pixel constant setup

– Shader setup

● GCM implementation

– PS3-specific API for CB generation
● Is mostly present on SPU

– This makes porting easier



13

Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A



14

SPU – what is it?

● 6 like cores

– 3.2 GHz, in-order, dual-issue

– 128 vector registers

– Local Storage (LS)
● 256 Kb – code + data
● 6 cycle latency
● External memory is accessed via DMA

– Asynchronous memcpy (LS ↔ memory)
– Alignment/size restrictions



15

SPU – porting tasks

● Build code for SPU

● Run code on SPU

– Task/job manager

– Code/data size

– Virtual functions

● Optimization

– Effective usage of DMA

– Code optimization



16

Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A



17

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization



18

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization



19

Porting steps

● Step 1 – working prototype

– Speed does not matter
● Non-optimal code, synchronous DMA

– Complete functionality

● Step 2 – data optimization

● Step 3 – code optimization



20

Step 1 – PPU interface

● async::Renderer

– Simple interface
● push(RenderItem) (+ batch versions)
● flush()
● kick()

– The limits are set when creating renderer
● Maximum number of items
● Maximum CB size

– Double-buffering for CB



21

Step 1 – PPU interface
PPURenderer 1 Renderer 2

push
push
push

push

item
item

item
item

flush

flushSPU 1 SPU 2

CB CB

render jobrender job

kick2 GPU CB
render 2

render misc
render 1

render
misc

kick1

GPU
render 2

render misc

render 1

Write

Read



22

Step 1 – DMA helpers

● Convenience functions to simplify DMA

– Allocator
● Trivial stack allocator, ptr += size

– fetchData(ea, size)
● Memory allocation and synchronous DMA
● Can handle misalignment

– fetchObject / fetchObjectArray
● Typed versions of fetchData

– Later we made asynchronous variants



23

Step 1 – DMA helpers

● void* fetchData(alloc, ea, size)
uint32_t sizeAligned = (size + (ea & 15) + 15) & ~15;

void* ls = alloc.allocate(sizeAligned);

DmaGet(ls, ea & ~15, sizeAligned);

DmaWait();

return (char*)ls + (ea & 15);

● T* fetchObject(alloc, ea)
return (T*)fetchData(alloc, ea, sizeof(T));



24

Step 1 – virtual functions

● PPU vfptr does not make sense on SPU

● The solution varies across interface

– Shader
● Single supported shader type – HWShader

– RenderEntity
● Enum for all supported types
● Enum value is stored in unused pointer bits

– ptr = actual_ptr | type // actual_ptr % 4 == 0



25

Step 1 – encapsulation

● Makes porting harder

– Methods with incorrect SPU code
● CRT_ASSERT(next->prev == this)

– Additional method parameters
● render() → render(Context)

● Makes SPU code refactoring harder

● Solution (some people don't like this...)

– #define private public [SPU-only!]



26

Step 1 – shader patch

● RSX lacks PS constant registers

– Constants are embedded into microcode

– Microcode has to be patched
● RSX blitting

– Huge RSX cost (up to 50% frame time)
● PPU render

– Ring buffer for microcode instances
– Complex synchronization

● SPU render
– Instances are stored in the same buffer where 

CB resides



27

Step 1 – synchronization

● PPU/SPU

– Data races
● Transformation matrices
● Material parameters

– Objects can be deleted

– Solution
● SPU code has to be fast
● PPU waits for SPU before changing data



28

Step 1 – synchronization

● SPU/RSX

– PPU
● flush() inserts WAIT at the beginning of CB

– Waits indefinitely
● kick() inserts CALL in main CB

– SPU
● Fills CB with rendering commands/shaders
● Appends RET to the end
● Replaces WAIT with NOP*



29

Step 1 – results

● Porting time – 3 days

● Render time – 25 ms

– PPU render time is 12.5 ms

– How to make it faster?
● Brute-force – split queue into 5 chunks

– 5 ms for 5 SPU
● Write better code

● Completely separate code branch

– Common data structures



30

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization



31

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

– Change data layout
● Lower indirection count

– Asynchronous DMA
● Double-buffering for input/output data

● Step 3 – code optimization



32

Step 2 – memory layout

RenderItem

SceneNode RenderStaticGeometry

Material

VertexDeclaration

HWShader

Parameters

Textures

TextureDesc

TextureData

GCMTexture

Param ctab

Auto ctab

HWShaderImpl

VS command buffer PS program



33

Step 2 – data layout

● Goal – lower indirection count

– Actually, make graph paths shorter

● Where do they come from?

– Shared data

– “Variable” length arrays
● Size is known at load time

– “Good” architecture
● Law of Demeter

– Pimpl



34

● Textures

– struct TextureInfo
● Stored in data array
● Is updated in setValue
● The contents is sufficient for texture setup

– 4b – sampler state, 12b – texture header

● Render States

– Stored in data array
● 16b for all states

Step 2 – materials



35

● Before:

● After:

Step 2 – materials

Material + Render States Parameters

Textures TextureDesc

TextureData GCMTexture

Material Parameters + Textures + Render States



36

Step 2 – HWShaderImpl

● Lots of “variable” length arrays

– Constant tables

– Shader data

● Solution

– Sequential layout of everything in memory

– Header contains offsets

– DMA get and pointer fixup
● vsCB = (char*)impl + impl->vsCBOffset



37

● Before:

● After:

Step 2 – HWShaderImpl

Param ctab Auto ctabHWShaderImpl VS CB PS program

Param ctab

Auto ctab HWShaderImpl

VS command buffer

PS program

HWShader



38

Step 2 – VertexDeclaration

● class RenderStaticGeometry

– VertexDeclaration* vdecl
● Can store vdecl by value

– Space penalty

● There are not a lot of unique instances

– There is a declaration cache anyway

– Can implement a software cache!
● 4 element cache, DMA stall on cache miss
● 30 cache misses for 3500 batches



39

Step 2 – FlatRenderItem

● Graph path to HWShaderImpl is long

– item->material->shader->impl

● FlatRenderItem

– Caches pointers/sizes
● Material data EA/size
● Shader impl EA/size
● Scene node/render entity EA

– Created at level load time



40

Step 2 – FlatRenderItem

RenderItem SceneNodeRenderStaticGeometry

Material HWShader HWShaderImpl

● Before:

● After:

FlatRenderItemSceneNode

RenderStaticGeometryMaterial data

HWShaderImpl

Material data



41

Step 2 – DMA optimizations

● Up to now all DMA are synchronous

● Can hide DMA latency!

– Launch several requests
● Wait for all at once

– Double buffering
● While current batch is being processed

– Source data for next batch is being read
– Result for previous batch is being written

● Requires additional LS memory
– Not a problem in our case



42

Step 2 – output DMA

● Command buffer

– Two 8 Kb buffers

– Swap on buffer overflow

● Shader buffer

– Can do double buffering

– It's easier to wait for transfer though
● But before processing instead of after!
● DmaPut has enough latency to complete



43

Step 2 – input DMA

● For each batch

– Wait for previous transfers

– Prefetch next batch
● 4 DmaGet at once

– Current batch processing

● Requires loop prologue

– Prefetch for first batch



44

Step 2 – input DMA

● Complex code (lack of experience atm)

– FlatRenderItem are fetched one by one
● It's easier to fetch in groups

● Bugs

– The code prefetches one item past the end 
● PPU duplicates last item to avoid errors

– Don't forget to wait for last DmaGet !
● Otherwise stack corruption is possible



45

Step 2 – results

● Optimization time – 3 days

● Render time – 8 ms

– Without double buffering – 12 ms

● PPU time did not change (don't ask)

FlatRenderItem

Material data

SceneNode

RenderStaticGeometry VertexDeclaration

HWShaderImpl



46

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization



47

Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization

– Profiling
● SN Tuner
● SPUsim

– Optimization



48

Step 3 – SN Tuner

● CPU/GPU profiler for PS3

– SPU performance counters
● DMA stalls
● Instruction scheduling

– Overview of code quality

– SPU PC sampling
● No overhead as opposed to PPU sampling
● Used for function cost overview

– Had to selectively remove inlining



49

Step 3 – SPUsim

● SPU simulator for PC

– Awesome for prototyping
● Lightning fast iterations
● Stalls statistics
● Instruction trace

– Shows stalls, lack of pairing

– For small self-contained functions
● You can setup DMA, but it's not very easy



50

Step 3 – branching

● Branching carries a lot of overhead

● Reduce branch counts

– Branch flattening

– Loop unrolling

– Switch → function pointer table

● Zero-size DMA

● Branch hinting



51

Step 3 – LS load/store

● LS load/store is limited to 16b size/align

– Compiler performs shuffle / masking

● 16b reads

– Padding for input data

– Loop unrolling

● 16b writes

– Write several RSX commands at a time

– Padding for output data (via NOP for RSX)



52

Step 3 – results

● Optimization time – 5 days

● Render time – 2 ms

● Further optimizations

– Code optimization is still possible
● But is not worth it for now

– Parallel rendering with N SPUs
● Different scene chunks
● Different passes



53

Porting results

● PPU time – 12.5 ms

● SPU time (prototype) – 25 ms (3 days)

● SPU time (layout) – 12 ms (2.5 days)

● SPU time (async DMA) – 8 ms (1 day)

● SPU time (code) – 2 ms (5 days)

● 75 Kb SPU code, 20 Kb PPU code

– Currently 105 / 26 Kb



54

Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A



55

Development

● Already implemented

– Batch sorting

– Culling (frustum, screen size)

– Custom game parameter setup

● Future work

– Occlusion culling (already implemented)

– Single buffered context

– Uber shaders



56

Q & A

?
Arseny “Zeux” Kapoulkine

CREAT Studios
arseny.kapoulkine@gmail.com

http://zeuxcg.org/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

