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Introduction

● Smash Cars 2 project

– Static scene of moderate size

– Many dynamic objects

– Multiple render passes

– Totals up to 3000 batches per frame

● PPU render up to 12 ms

– Target – 60 fps :(
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Introduction
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Optimization techniques

● PPU code optimizations

– Has been done several times

– Would like PPU time to become ~0

● Static command buffers

– Somewhat restricted

– Culling is unclear

● Move code to SPU
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Agenda

● Render design

● Brief description of SPU

● Porting

● Development

● Q & A
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Render – “high” level

● Rendering is done on sets of RenderItem

– The sets are already sorted and culled

● RenderItem aggregates:

– SceneNode

– Material

– Shader

– RenderEntity



8

Render – SceneNode

● Transform graph node

– Local transform

– Global transform (derived from local)

● Local transforms are set by misc code

– Animations

– Physics

– Game logic
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Render – Shader

● Render pipeline setup algorithm

– virtual void apply
● Setups auto-parameters

– Are computed automagically by the system
– WorldViewProjection, ShadowMap, etc.

– virtual void setup
● Setups material

– Material parameters (including textures) 
– Shaders

● 99% objects are of final type HWShader
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Render – Material

● Container of instance data for Shader

– Data layout description
● Parameter name/type
● Offset in data array

– Data array

– Accessors for name/index (get/set)

– Render states
● Blend, alpha test, depth, cull



11

Render – RenderEntity

● Drawing algorithm

– virtual void render

● Several implementations

– RenderStaticGeometry

– RenderSkinnedGeometry

– RenderMorphedGeometry

– DynamicObject
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Render – low level

● Cross-platform wrappers

– State setup (with cache)

– Vertex/pixel constant setup

– Shader setup

● GCM implementation

– PS3-specific API for CB generation
● Is mostly present on SPU

– This makes porting easier
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SPU – what is it?

● 6 like cores

– 3.2 GHz, in-order, dual-issue

– 128 vector registers

– Local Storage (LS)
● 256 Kb – code + data
● 6 cycle latency
● External memory is accessed via DMA

– Asynchronous memcpy (LS ↔ memory)
– Alignment/size restrictions
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SPU – porting tasks

● Build code for SPU

● Run code on SPU

– Task/job manager

– Code/data size

– Virtual functions

● Optimization

– Effective usage of DMA

– Code optimization
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Porting steps

● Step 1 – working prototype
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● Step 3 – code optimization
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Porting steps

● Step 1 – working prototype

– Speed does not matter
● Non-optimal code, synchronous DMA

– Complete functionality

● Step 2 – data optimization

● Step 3 – code optimization
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Step 1 – PPU interface

● async::Renderer

– Simple interface
● push(RenderItem) (+ batch versions)
● flush()
● kick()

– The limits are set when creating renderer
● Maximum number of items
● Maximum CB size

– Double-buffering for CB
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Step 1 – PPU interface
PPURenderer 1 Renderer 2

push
push
push

push

item
item

item
item

flush

flushSPU 1 SPU 2

CB CB

render jobrender job

kick2 GPU CB
render 2

render misc
render 1

render
misc

kick1

GPU
render 2

render misc

render 1

Write

Read
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Step 1 – DMA helpers

● Convenience functions to simplify DMA

– Allocator
● Trivial stack allocator, ptr += size

– fetchData(ea, size)
● Memory allocation and synchronous DMA
● Can handle misalignment

– fetchObject / fetchObjectArray
● Typed versions of fetchData

– Later we made asynchronous variants
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Step 1 – DMA helpers

● void* fetchData(alloc, ea, size)
uint32_t sizeAligned = (size + (ea & 15) + 15) & ~15;

void* ls = alloc.allocate(sizeAligned);

DmaGet(ls, ea & ~15, sizeAligned);

DmaWait();

return (char*)ls + (ea & 15);

● T* fetchObject(alloc, ea)
return (T*)fetchData(alloc, ea, sizeof(T));
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Step 1 – virtual functions

● PPU vfptr does not make sense on SPU

● The solution varies across interface

– Shader
● Single supported shader type – HWShader

– RenderEntity
● Enum for all supported types
● Enum value is stored in unused pointer bits

– ptr = actual_ptr | type // actual_ptr % 4 == 0
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Step 1 – encapsulation

● Makes porting harder

– Methods with incorrect SPU code
● CRT_ASSERT(next->prev == this)

– Additional method parameters
● render() → render(Context)

● Makes SPU code refactoring harder

● Solution (some people don't like this...)

– #define private public [SPU-only!]
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Step 1 – shader patch

● RSX lacks PS constant registers

– Constants are embedded into microcode

– Microcode has to be patched
● RSX blitting

– Huge RSX cost (up to 50% frame time)
● PPU render

– Ring buffer for microcode instances
– Complex synchronization

● SPU render
– Instances are stored in the same buffer where 

CB resides
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Step 1 – synchronization

● PPU/SPU

– Data races
● Transformation matrices
● Material parameters

– Objects can be deleted

– Solution
● SPU code has to be fast
● PPU waits for SPU before changing data
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Step 1 – synchronization

● SPU/RSX

– PPU
● flush() inserts WAIT at the beginning of CB

– Waits indefinitely
● kick() inserts CALL in main CB

– SPU
● Fills CB with rendering commands/shaders
● Appends RET to the end
● Replaces WAIT with NOP*
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Step 1 – results

● Porting time – 3 days

● Render time – 25 ms

– PPU render time is 12.5 ms

– How to make it faster?
● Brute-force – split queue into 5 chunks

– 5 ms for 5 SPU
● Write better code

● Completely separate code branch

– Common data structures
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Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

– Change data layout
● Lower indirection count

– Asynchronous DMA
● Double-buffering for input/output data

● Step 3 – code optimization
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Step 2 – memory layout

RenderItem

SceneNode RenderStaticGeometry

Material

VertexDeclaration

HWShader

Parameters

Textures

TextureDesc

TextureData

GCMTexture

Param ctab

Auto ctab

HWShaderImpl

VS command buffer PS program
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Step 2 – data layout

● Goal – lower indirection count

– Actually, make graph paths shorter

● Where do they come from?

– Shared data

– “Variable” length arrays
● Size is known at load time

– “Good” architecture
● Law of Demeter

– Pimpl
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● Textures

– struct TextureInfo
● Stored in data array
● Is updated in setValue
● The contents is sufficient for texture setup

– 4b – sampler state, 12b – texture header

● Render States

– Stored in data array
● 16b for all states

Step 2 – materials
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● Before:

● After:

Step 2 – materials

Material + Render States Parameters

Textures TextureDesc

TextureData GCMTexture

Material Parameters + Textures + Render States
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Step 2 – HWShaderImpl

● Lots of “variable” length arrays

– Constant tables

– Shader data

● Solution

– Sequential layout of everything in memory

– Header contains offsets

– DMA get and pointer fixup
● vsCB = (char*)impl + impl->vsCBOffset
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● Before:

● After:

Step 2 – HWShaderImpl

Param ctab Auto ctabHWShaderImpl VS CB PS program

Param ctab

Auto ctab HWShaderImpl

VS command buffer

PS program

HWShader
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Step 2 – VertexDeclaration

● class RenderStaticGeometry

– VertexDeclaration* vdecl
● Can store vdecl by value

– Space penalty

● There are not a lot of unique instances

– There is a declaration cache anyway

– Can implement a software cache!
● 4 element cache, DMA stall on cache miss
● 30 cache misses for 3500 batches
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Step 2 – FlatRenderItem

● Graph path to HWShaderImpl is long

– item->material->shader->impl

● FlatRenderItem

– Caches pointers/sizes
● Material data EA/size
● Shader impl EA/size
● Scene node/render entity EA

– Created at level load time
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Step 2 – FlatRenderItem

RenderItem SceneNodeRenderStaticGeometry

Material HWShader HWShaderImpl

● Before:

● After:

FlatRenderItemSceneNode

RenderStaticGeometryMaterial data

HWShaderImpl

Material data
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Step 2 – DMA optimizations

● Up to now all DMA are synchronous

● Can hide DMA latency!

– Launch several requests
● Wait for all at once

– Double buffering
● While current batch is being processed

– Source data for next batch is being read
– Result for previous batch is being written

● Requires additional LS memory
– Not a problem in our case
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Step 2 – output DMA

● Command buffer

– Two 8 Kb buffers

– Swap on buffer overflow

● Shader buffer

– Can do double buffering

– It's easier to wait for transfer though
● But before processing instead of after!
● DmaPut has enough latency to complete
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Step 2 – input DMA

● For each batch

– Wait for previous transfers

– Prefetch next batch
● 4 DmaGet at once

– Current batch processing

● Requires loop prologue

– Prefetch for first batch
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Step 2 – input DMA

● Complex code (lack of experience atm)

– FlatRenderItem are fetched one by one
● It's easier to fetch in groups

● Bugs

– The code prefetches one item past the end 
● PPU duplicates last item to avoid errors

– Don't forget to wait for last DmaGet !
● Otherwise stack corruption is possible
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Step 2 – results

● Optimization time – 3 days

● Render time – 8 ms

– Without double buffering – 12 ms

● PPU time did not change (don't ask)

FlatRenderItem

Material data

SceneNode

RenderStaticGeometry VertexDeclaration

HWShaderImpl
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Porting steps
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Porting steps

● Step 1 – working prototype

● Step 2 – data optimization

● Step 3 – code optimization

– Profiling
● SN Tuner
● SPUsim

– Optimization
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Step 3 – SN Tuner

● CPU/GPU profiler for PS3

– SPU performance counters
● DMA stalls
● Instruction scheduling

– Overview of code quality

– SPU PC sampling
● No overhead as opposed to PPU sampling
● Used for function cost overview

– Had to selectively remove inlining



49

Step 3 – SPUsim

● SPU simulator for PC

– Awesome for prototyping
● Lightning fast iterations
● Stalls statistics
● Instruction trace

– Shows stalls, lack of pairing

– For small self-contained functions
● You can setup DMA, but it's not very easy
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Step 3 – branching

● Branching carries a lot of overhead

● Reduce branch counts

– Branch flattening

– Loop unrolling

– Switch → function pointer table

● Zero-size DMA

● Branch hinting
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Step 3 – LS load/store

● LS load/store is limited to 16b size/align

– Compiler performs shuffle / masking

● 16b reads

– Padding for input data

– Loop unrolling

● 16b writes

– Write several RSX commands at a time

– Padding for output data (via NOP for RSX)
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Step 3 – results

● Optimization time – 5 days

● Render time – 2 ms

● Further optimizations

– Code optimization is still possible
● But is not worth it for now

– Parallel rendering with N SPUs
● Different scene chunks
● Different passes
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Porting results

● PPU time – 12.5 ms

● SPU time (prototype) – 25 ms (3 days)

● SPU time (layout) – 12 ms (2.5 days)

● SPU time (async DMA) – 8 ms (1 day)

● SPU time (code) – 2 ms (5 days)

● 75 Kb SPU code, 20 Kb PPU code

– Currently 105 / 26 Kb
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Agenda

● Render design
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Development

● Already implemented

– Batch sorting

– Culling (frustum, screen size)

– Custom game parameter setup

● Future work

– Occlusion culling (already implemented)

– Single buffered context

– Uber shaders
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Q & A

?
Arseny “Zeux” Kapoulkine

CREAT Studios
arseny.kapoulkine@gmail.com

http://zeuxcg.org/
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