

Job scheduler
as simple as possible

but not simpler

Arseny “Zeux” Kapoulkine
CREAT Studios

arseny.kapoulkine@gmail.com

mailto:arseny.kapoulkine@gmail.com

Free lunch is over!

● The biggest sea change in software
development since the OO revolution is
knocking at the door, and its name is
Concurrency.

- Herb Sutter

Parallel universe

● A lot of general-purpose cores
– PS3: 6 SPU

– XBox 360: 3 PowerPC cores

● Different approaches
– Thread-parallel programming

– Task-parallel programming

– Data-parallel programming

Glossary

● Job
– Code that performs a data transformation

● Batch
– Job reference + data

● Scheduler
– A system that executes batches

Job

● A function that transforms data
– Side effects limited to the input data

● No global variable access

● Can run many times per frame
– Sometimes simultaneously

– Sometimes on the same data

● No preemption
– Left out since it requires extra memory

Scheduler v1.0

● Simplest code possible
– Reasonably convenient

– Fast

● Add batches to execute
● Wait for execution to stop

– Two levels of synchronization
● Single batch
● Group of batches (32 groups, uint32 counter per group)

Scheduler v1.0

● Global batch queue
– Fixed queue size

– Lock-free

– Push and pop copy batch data
● No memory management for batch structures

– No empty/size operations
● Does not make sense in a multi-threaded queue

– Applicable beyond schedulers!

Lock-free queue

● Queue (FIFO) is a fundamental container
● A lot of published lock-free implementations

– MPMC – Multi-Producer, Multi-Consumer
● Implementing Lock-Free Queues [94] – RACE!
● Correction of a Memory Management Method for

Lock-Free Data Structures [95]
● Optimised Lock-Free FIFO Queue [01] – RACE!
● Optimised Lock-Free FIFO Queue [03]
● Optimized Lock-Free FIFO Queue continued [05]

Lock-free queue – 1/3

Lock-free queue – 2/3

Lock-free queue – 3/3

Lock-free queue – 3/3

● Are there lock-free and bug-free algorithms?
– Yes.

– How about algorithms with 4 pages of code?
● The code above has a memory leak

Batch

struct Batch {

 /* header: 16 bytes */

 …

 /* job data: 112 bytes */

 char user_data[112];

};

Queue

struct Queue {

 Batch batches[QUEUE_SIZE];

 volatile uint32_t get;

 volatile uint32_t put;

};

Queue internals

● Circular buffer
– get – first batch that has not been processed

– put – first batch that has not been queued

– get != put iff queue is not empty

● get/put can overflow
– Batch indices are specified modulo QUEUE_SIZE

● QUEUE_SIZE is a power of two

– 232 * 3000 cycles = 1.2 hours

Queue internals

● Every batch has two indices
– Global – uint32_t, reasonably unique

– Local – from 0 to QUEUE_SIZE-1

● All operations start by selecting the global index
– 1 atomic instruction

● All race conditions are limited to the same batch
– … or to two batches with the same local index

Queue: adding a batch

// atomically: index = q.put++

uint32_t index = atomic_increment(&q.put);

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;

Queue: removing a batch

uint32_t index;

do {

 index = q.get;

 if (index == q.put) return QUEUE_EMPTY;

} while (!atomic_cas(&q.get, index, index + 1));

*result = q.batches[index % QUEUE_SIZE];

Race condition #1

uint32_t index = atomic_increment(&q.put);

// index points to a batch that has not been fully

// written; data read below is partially stale

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;

Race condition #1 - solution

// queue_push

batch->user_data = user_data;

memory_barrier();

batch->ready = true;

// queue_pop

while (batch->ready == false) yield();

*result = *batch;

Race condition #2

uint32_t index = atomic_increment(&q.put);

// index points to a batch that has been written

// previously but has not been processed;

// old batch data is overwritten (lost)

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;

Race condition #2 – solution?

// queue_push

while (batch->ready == true) yield();

// queue_pop

while (batch->ready == false) yield();

*result = *batch;

batch->ready = false;

Race condition #3

// queue_push

while (batch->ready == true) yield();

● Multiple threads wait on the same batch
– Same local index

– Can happen if queue overflows

● Race when freeing the batch
– Multiple threads change the same batch

Race condition #3

● We need to differentiate the waiting threads
– Need a globally unique batch identifier...

– … wait, we have the global batch index!

● The thread with smallest batch index can write
– All other threads wait until this batch becomes free

Batch

struct Batch {

 /* header: 12 bytes + 4 bytes of padding */

 uint32_t index;

 struct Job job;

 /* job data: 112 bytes */

 char user_data[112];

};

Queue: adding a batch

uint32_t index = atomic_increment(&q.put);

batch = &q.batches[index % QUEUE_SIZE];

while (batch_busy(index, batch->index)) yield();

batch->job = job;

batch->user_data = user_data;

memory_barrier();

batch->index = index;

Queue: removing a batch

uint32_t index;

do {

 index = q.get;

 if (index == q.put) return QUEUE_EMPTY;

 batch = &q.batches[index % QUEUE_SIZE];

 if (batch->index != index) { yield(); continue; }

} while (!atomic_cas(&q.get, index, index + 1));

*result = *batch;

batch->index = index + 1; // free the batch slot

Queue: batch status

● batch->index == index
– Batch with global index index has been added to

the queue but has not been removed

● (index – batch->index) >= QUEUE_SIZE
– Batch with global index other than index has been

added to the queue – batch_busy condition!

● Otherwise
– Batch with global index index has been removed

Queue: batch status

● batch->index == index
– Batch with global index index has been added to the

queue but has not been removed

● Let's delay freeing the batch slot until it has been
executed
– Hey, we just got wait_for_batch for free!

batch = &q.batches[index % QUEUE_SIZE];

while (batch->index == index) yield();

Scheduler v1.0 – results

● API for task-parallel processing
– uint32_t push_batch(...);

– void wait_for_batch(uint32_t index);

– void wait_for_group(uint32_t group_index);

● 1 atomic operation for push/pop
– +1 atomic operation for group batch counter

● Simple implementation

Batch dependency graph

(EA DICE Frostbite)

Batch dependency graph

● Graph can be built dynamically
– Job queues several batches

● More efficient than building graph up-front
– Minimizes working set for scheduler

– However, scheduler has less freedom

Heightmap generation

Heightmap downsample

Normalmap generation

Data processing patterns

● Common pattern #1: sequence of stages
– Can have multiple parallel sequences

● i.e. multiple render queues

● Physics

● Render

broadphase narrowphase island solve synchronize

rasterize
occluders cull sort generate CB submit

Data processing patterns

● Common pattern #2 – data-parallel stages
– Good scaling given enough data

broadphase

narrowphase island solve

broadphase

broadphase

broadphase

narrowphase

narrowphase

narrowphase

sync

island solve

island solve

island solve

Scheduler v2.0

● Data-parallel jobs
– System has to stay simple

– Drawing inspiration from GPGPU

● CUDA / DirectCompute / OpenCL
– Run the same batch with same input arguments on

multiple cores

– Each core knows the invocation index and size
● blockIdx, blockDim

Batch block

● Block parameters are added to Batch
– index – batch index in block; [0..count-1]

– count – total number of batches in the block

● Example: parallel for

start = size / block.count * block.index;

end = size / block.count * (block.index + 1);

for (i = start; i < end; ++i)

 // process element i

Batch block - synchronization

● How do we sync jobs processing one block?
● GPU: __syncthreads

– Requires preemption

– Requires specific scheduling constraints

● New concept!
– Prologue/epilogue for the block

Prologue and epilogue

● Prologue
– New job entrypoint

– Executes once before first main()

● Epilogue
– New job entrypoint

– Executes once after last main()

● Input data is the same for all entrypoints

prologue

epilogue

m
ai

n

m
ai

n

m
ai

n

Batch block - examples

● Parallel for with dynamic load balancing
– element = atomic_increment(&g_counter);

– Can use block index to manage scratch memory

● Stage sequence with data-parallel stages
– Prologue: prepare data (if necessary)

– Main: process data

– Epilogue: queue batch for next stage

Batch

struct Batch {

 uint32_t index;

 struct Block block;

 struct Job job;

 /* job data: 112 bytes */

 char user_data[112];

};

Block

struct Block {

 volatile uint16_t semaphore;

 uint16_t count;

};

Queue

struct Queue {

 Batch batches[QUEUE_SIZE];

 volatile uint32_t get;

 volatile uint32_t get_block;

 volatile uint32_t put;

};

Queue: removing a batch

uint32_t index, block, new_index, new_block;

do {

 index = q.get; block = q.get_block;

 if (index == q.put) return QUEUE_EMPTY;

 batch = &q.batches[index % QUEUE_SIZE];

 if (batch->index != index) { yield(); continue; }

 bool last_batch = (block + 1 == batch->block.count);

 new_index = last_batch ? index + 1 : index;

 new_block = last_batch ? 0 : block + 1;

} while (!atomic_cas2(&q.get, index, new_index,

 &q.get_block, block, new_block));

Queue: batch status

● Batch slot is in use until all jobs finished
– Including prologue/epilogue

● We can use batch slot for job synchronization!
– volatile uint16_t semaphore;

– Batch occupies a full cache line on PS3/Xbox 360
● 128b size and alignment
● Can use SPU atomic cache unit

Prologue execution

● If prologue exists:
– If batch.index == 0, increment semaphore

– Otherwise wait until semaphore reaches 1

● If prologue exists we need to wait
– Limits parallelism

– Often best to move prologue code to another batch

– However this is not a problem if prologue is small

Epilogue execution

● Increment semaphore
● If semaphore was equal to block.count, this is

the last batch in the block
– (compare with block.count-1 if there is no prologue)

– Execute epilogue if necessary

– Free the batch slot

batch->index = index + 1;

Prologue/epilogue overhead

● For batches with block.count == 1
– No additional overhead

– Check block.count before working with semaphore

● Batch with block.count > 1 without prologue
– +1 atomic operation for executing batch

● Batch with block.count > 1 with prologue
– +2 atomic operations for executing first batch

Scheduler v2.0 – results

● API for data-parallel processing
– block.index and block.count

– Synchronization (prologue/epilogue)

● Scheduling overhead is still low
– Same as v1.0 if block.count == 1

● Scheduler code is still simple

● Multithreaded code can be simple
– Both high level... (parallel for)

– … and low level (lock-free MPMC FIFO)

● Job scheduler can be simple
– Simple API

– Simple code

– Low overhead

● Keep It Simple, Stupid

?

Arseny “Zeux” Kapoulkine
CREAT Studios

arseny.kapoulkine@gmail.com

mailto:arseny.kapoulkine@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

