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Free lunch is over!

● The biggest sea change in software 
development since the OO revolution is 
knocking at the door, and its name is 
Concurrency.

- Herb Sutter



  

Parallel universe

● A lot of general-purpose cores
– PS3: 6 SPU

– XBox 360: 3 PowerPC cores

● Different approaches
– Thread-parallel programming

– Task-parallel programming

– Data-parallel programming



  

Glossary

● Job
– Code that performs a data transformation

● Batch
– Job reference + data

● Scheduler
– A system that executes batches



  

Job

● A function that transforms data
– Side effects limited to the input data

● No global variable access

● Can run many times per frame
– Sometimes simultaneously

– Sometimes on the same data

● No preemption
– Left out since it requires extra memory



  

Scheduler v1.0

● Simplest code possible
– Reasonably convenient

– Fast

● Add batches to execute
● Wait for execution to stop

– Two levels of synchronization
● Single batch
● Group of batches (32 groups, uint32 counter per group)



  

Scheduler v1.0

● Global batch queue
– Fixed queue size

– Lock-free

– Push and pop copy batch data
● No memory management for batch structures

– No empty/size operations
● Does not make sense in a multi-threaded queue

– Applicable beyond schedulers!



  

Lock-free queue

● Queue (FIFO) is a fundamental container
● A lot of published lock-free implementations

– MPMC – Multi-Producer, Multi-Consumer
● Implementing Lock-Free Queues [94] – RACE!
● Correction of a Memory Management Method for 

Lock-Free Data Structures [95]
● Optimised Lock-Free FIFO Queue [01] – RACE!
● Optimised Lock-Free FIFO Queue [03]
● Optimized Lock-Free FIFO Queue continued [05]



  

Lock-free queue – 1/3



  

Lock-free queue – 2/3



  

Lock-free queue – 3/3



  

Lock-free queue – 3/3

● Are there lock-free and bug-free algorithms?
– Yes.

– How about algorithms with 4 pages of code?
● The code above has a memory leak



  

Batch

struct Batch {

    /* header: 16 bytes */

    …

    /* job data: 112 bytes */

    char user_data[112];

};



  

Queue

struct Queue {

    Batch batches[QUEUE_SIZE];

    volatile uint32_t get;

    volatile uint32_t put;

};



  

Queue internals

● Circular buffer
– get – first batch that has not been processed

– put – first batch that has not been queued

– get != put iff queue is not empty

● get/put can overflow
– Batch indices are specified modulo QUEUE_SIZE

● QUEUE_SIZE is a power of two

– 232 * 3000 cycles = 1.2 hours



  

Queue internals

● Every batch has two indices
– Global – uint32_t, reasonably unique

– Local – from 0 to QUEUE_SIZE-1

● All operations start by selecting the global index
– 1 atomic instruction

● All race conditions are limited to the same batch
– … or to two batches with the same local index 



  

Queue: adding a batch

// atomically: index = q.put++

uint32_t index = atomic_increment(&q.put);

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;



  

Queue: removing a batch

uint32_t index;

do {

    index = q.get;

    if (index == q.put) return QUEUE_EMPTY;

} while (!atomic_cas(&q.get, index, index + 1));

*result = q.batches[index % QUEUE_SIZE];



  

Race condition #1

uint32_t index = atomic_increment(&q.put);

// index points to a batch that has not been fully

// written; data read below is partially stale

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;



  

Race condition #1 - solution

// queue_push

batch->user_data = user_data;

memory_barrier();

batch->ready = true;

// queue_pop

while (batch->ready == false) yield();

*result = *batch;



  

Race condition #2

uint32_t index = atomic_increment(&q.put);

// index points to a batch that has been written

// previously but has not been processed;

// old batch data is overwritten (lost)

batch = &q.batches[index % QUEUE_SIZE];

batch->user_data = user_data;



  

Race condition #2 – solution?

// queue_push

while (batch->ready == true) yield();

// queue_pop

while (batch->ready == false) yield();

*result = *batch;

batch->ready = false;



  

Race condition #3

// queue_push

while (batch->ready == true) yield();

● Multiple threads wait on the same batch
– Same local index

– Can happen if queue overflows

● Race when freeing the batch
– Multiple threads change the same batch



  

Race condition #3

● We need to differentiate the waiting threads
– Need a globally unique batch identifier...

– … wait, we have the global batch index!

● The thread with smallest batch index can write
– All other threads wait until this batch becomes free



  

Batch

struct Batch {

    /* header: 12 bytes + 4 bytes of padding */

    uint32_t index;

    struct Job job;

    /* job data: 112 bytes */

    char user_data[112];

};



  

Queue: adding a batch

uint32_t index = atomic_increment(&q.put);

batch = &q.batches[index % QUEUE_SIZE];

while (batch_busy(index, batch->index)) yield();

batch->job = job;

batch->user_data = user_data;

memory_barrier();

batch->index = index;



  

Queue: removing a batch

uint32_t index;

do {

    index = q.get;

    if (index == q.put) return QUEUE_EMPTY;

    batch = &q.batches[index % QUEUE_SIZE];

    if (batch->index != index) { yield(); continue; }

} while (!atomic_cas(&q.get, index, index + 1));

*result = *batch;

batch->index = index + 1; // free the batch slot 



  

Queue: batch status

● batch->index == index
– Batch with global index index has been added to 

the queue but has not been removed

● (index – batch->index) >= QUEUE_SIZE
– Batch with global index other than index has been 

added to the queue – batch_busy condition!

● Otherwise
– Batch with global index index has been removed



  

Queue: batch status

● batch->index == index
– Batch with global index index has been added to the 

queue but has not been removed

● Let's delay freeing the batch slot until it has been 
executed
– Hey, we just got wait_for_batch for free!

batch = &q.batches[index % QUEUE_SIZE];

while (batch->index == index) yield();



  

Scheduler v1.0 – results

● API for task-parallel processing
– uint32_t push_batch(...);

– void wait_for_batch(uint32_t index);

– void wait_for_group(uint32_t group_index);

● 1 atomic operation for push/pop
– +1 atomic operation for group batch counter

● Simple implementation



  

Batch dependency graph

(EA DICE Frostbite)



  

Batch dependency graph

● Graph can be built dynamically
– Job queues several batches

● More efficient than building graph up-front
– Minimizes working set for scheduler

– However, scheduler has less freedom

Heightmap generation

Heightmap downsample

Normalmap  generation



  

Data processing patterns

● Common pattern #1: sequence of stages
– Can have multiple parallel sequences

● i.e. multiple render queues

● Physics

● Render

broadphase narrowphase island solve synchronize

rasterize
occluders cull sort generate CB submit



  

Data processing patterns

● Common pattern #2 – data-parallel stages
– Good scaling given enough data

broadphase

narrowphase island solve

broadphase

broadphase

broadphase

narrowphase

narrowphase

narrowphase

sync

island solve

island solve

island solve



  

Scheduler v2.0

● Data-parallel jobs
– System has to stay simple

– Drawing inspiration from GPGPU

● CUDA / DirectCompute / OpenCL
– Run the same batch with same input arguments on 

multiple cores

– Each core knows the invocation index and size
● blockIdx, blockDim



  

Batch block

● Block parameters are added to Batch
– index – batch index in block; [0..count-1]

– count – total number of batches in the block

● Example: parallel for

start = size / block.count * block.index;

end = size / block.count * (block.index + 1);

for (i = start; i < end; ++i)

    // process element i



  

Batch block - synchronization

● How do we sync jobs processing one block?
● GPU: __syncthreads

– Requires preemption

– Requires specific scheduling constraints

● New concept!
– Prologue/epilogue for the block



  

Prologue and epilogue

● Prologue
– New job entrypoint

– Executes once before first main()

● Epilogue
– New job entrypoint

– Executes once after last main()

● Input data is the same for all entrypoints

prologue

epilogue

m
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n
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n

m
ai

n



  

Batch block - examples

● Parallel for with dynamic load balancing
– element = atomic_increment(&g_counter);

– Can use block index to manage scratch memory

● Stage sequence with data-parallel stages
– Prologue: prepare data (if necessary)

– Main: process data

– Epilogue: queue batch for next stage



  

Batch

struct Batch {

    uint32_t index;

    struct Block block;

    struct Job job;

    /* job data: 112 bytes */

    char user_data[112];

};



  

Block

struct Block {

    volatile uint16_t semaphore;

    uint16_t count;

};



  

Queue

struct Queue {

    Batch batches[QUEUE_SIZE];

    volatile uint32_t get;

    volatile uint32_t get_block;

    volatile uint32_t put;

};



  

Queue: removing a batch

uint32_t index, block, new_index, new_block;

do {

    index = q.get; block = q.get_block;

    if (index == q.put) return QUEUE_EMPTY;

    batch = &q.batches[index % QUEUE_SIZE];

    if (batch->index != index) { yield(); continue; }

    bool last_batch = (block + 1 == batch->block.count);

    new_index = last_batch ? index + 1 : index;

    new_block = last_batch ? 0 : block + 1;

} while (!atomic_cas2(&q.get, index, new_index,

                                   &q.get_block, block, new_block));



  

Queue: batch status

● Batch slot is in use until all jobs finished
– Including prologue/epilogue

● We can use batch slot for job synchronization!
– volatile uint16_t semaphore;

– Batch occupies a full cache line on PS3/Xbox 360
● 128b size and alignment
● Can use SPU atomic cache unit 



  

Prologue execution

● If prologue exists:
– If batch.index == 0, increment semaphore

– Otherwise wait until semaphore reaches 1

● If prologue exists we need to wait
– Limits parallelism

– Often best to move prologue code to another batch

– However this is not a problem if prologue is small



  

Epilogue execution

● Increment semaphore
● If semaphore was equal to block.count, this is 

the last batch in the block
– (compare with block.count-1 if there is no prologue)

– Execute epilogue if necessary

– Free the batch slot

batch->index = index + 1;



  

Prologue/epilogue overhead

● For batches with block.count == 1
– No additional overhead

– Check block.count before working with semaphore

● Batch with block.count > 1 without prologue
– +1 atomic operation for executing batch

● Batch with block.count > 1 with prologue
– +2 atomic operations for executing first batch 



  

Scheduler v2.0 – results

● API for data-parallel processing
– block.index and block.count

– Synchronization (prologue/epilogue)

● Scheduling overhead is still low
– Same as v1.0 if block.count == 1

● Scheduler code is still simple



  

● Multithreaded code can be simple
– Both high level... (parallel for)

– … and low level (lock-free MPMC FIFO)

● Job scheduler can be simple
– Simple API

– Simple code

– Low overhead

● Keep It Simple, Stupid
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