
Getting Faster and Leaner on Mobile:

Optimizing Roblox with Vulkan

Arseny Kapoulkine (Roblox)

Joe Rozek (ARM)

Vulkan cookbook

Runnable samples Tutorials
Performance

analysis

Mobile-optimized, multi-platform framework

Vulkan best practice for mobile developers
• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

• Multi-platform (Android, Windows, Linux)

• Hardware counters displayed on device (no need for root) with HWCPipe

• In-detail explanations, backed-up with data, of best-practice recommendations

• Guide to using performance profiling tools and analysing the results

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

Framework

Framework
• Platform independent (Android, Linux and Windows)

• Maintain close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-

Cross)

• Simplify creation of Vulkan objects:

1. VkRenderPass

2. VkFramebuffer

3. VkPipelineLayout

4. VkDescriptorSetLayout

• Load 3D models (glTF 2.0 format)

• Internal scene graph

Initialization
Render Pass

Framebuffer

Attachment Description

Input Attachment

Output Attachment

Render Pass

Image View

Image View

Descriptor Set
Layout

Texture Binding

Uniform Binding

Pipeline Layout

Push constants

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Texture Binding

Uniform Binding

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

Object/Dependency

Application defined

Push constants

Initialization
Render Pass

Attachment Description

Input Attachment

Output Attachment

Descriptor Set
Layout

Texture Binding

Uniform Binding

Descriptor Pool

Texture Binding

Uniform Binding

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

GLSL Compiler

SPIRV Reflection

Framebuffer

Render Pass

Image View

Image View

Pipeline Layout

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Generated resource

Object/Dependency

Application defined

High-Level API

Vertex Buffer

Index Buffer

Command Buffer

Begin
Render Pass

Render Pass

Bind
resources

Graphics Pipeline

Pipeline Layout

Descriptor Sets

Draw End
Render Pass

Object/Dependency

Application defined

Color Image View

Color Image

Render Frame

Render Frame

Render Context

Render Frame

Offscreen Render Target

Shadow Render Target

Render Frame

Postprocess Render Target

Swapchain Render Target

Render Target

Depth Image

Depth Image View

Framebuffer

High-Level API

Command Buffer

Acquire
Next Image

Render Pass
Shadow

Render Target

Bind Resources

Draw Scene

Render Pass
Offscreen

Render Target

Bind Resources

Draw Scene

Render Pass
Postprocess

Render Target

Bind Resources

Draw Quad

Render Pass
Swapchain

Render Target

Bind Resources

Draw GUI + RT

Present
Image

Begin Frame End Frame

Tools

Streamline
Performance Analyzer

Mali GPU support
▪ Analyze and optimize Mali™ GPU

graphics and compute workloads

▪ Accelerate your workflow using

built-in analysis templates

Optimize for energy
▪ Move beyond simple frame time

and FPS tracking

▪ Monitor overall usage of processor

cycles and memory bandwidth

Speed up your app

▪ Find out where the system is

spending the most time

▪ Tune code for cache efficiency

Application event traceNative code profiling

▪ Break performance

down by function

▪ View cost alongside

disassembly listing

Arm CPU support
▪ Profile 32-bit and 64-bit apps for

ARMv7-A and ARMv8-A cores

▪ Tune multi-threading for

DynamIQ multi-core systems

▪ Annotate software

workloads

▪ Define logical event

channel structure

▪ Trace cross-channel

task dependencies

Tune your rendering

▪ Identify critical-path GPU

shader core resources

▪ Detect content inefficiency

Debuggers
RenderDoc, GAPID, and CodeXL

RenderDoc
▪ Supports Windows 7, 8.x, 10,

Linux, Android, and Stadia for

capture and replay out of the box.

▪ Very Customizable, embeds the

python runtime for programmatic

access to frame captures.

GAPID
▪ Identify rendering issues, such as

missing objects or object size and

texture problems.

▪ Inspect the resources loaded by

the graphics API.

CodeXL
▪ Support for Vulkan GLSL shaders,

including ISA generation and

performance statistics.

▪ Supports the Boltzmann driver,

AMD Radeon R9 Fury, Fury X, Fury

Nano GPUs, and 6th Generation

AMD A-series APU processors.

Porting Roblox to Vulkan

What is Roblox?

• Online multiplayer game creation platform

• All content is user generated

• Windows, macOS, iOS, Android, Xbox One

• 100M+ MAU, 2.5M+ CCU

What is Roblox?

What is Roblox?

What is Roblox?

What is Roblox?

Why Vulkan?

• Lots of performance challenges on Android

• Need maximum performance without tweaking content

• Need modern* GAPI features for current/future rendering projects

• Long term desire to discontinue OpenGL

• We’ve investing in Vulkan for the long term
• Performance, clear driver/hardware mental model

• Unified shader pipeline through SPIRV

• Potential to use on other platforms

Porting to Vulkan

• It took time!
• Started November 2016

• First working version March 2017

• First working version in production November 2017

• Fully live March 2018

• Continuous maintenance and performance tweaks ever since

• Seeing good steady adoption
• March 2018: 17% of our Android userbase (Android 7.0+)

• December 2018: 28% (Android 7.0+)

• February 2019: 23% (Android 7.1+)

• September 2019: 37% (Android 7.1+)

API pandemonium

• We did *not* rewrite the renderer to be “Vulkan-friendly”
• D3D9, D3D11, GL 2/3, GLES 2/3, Metal, Vulkan

• Slowly improving the common rendering interface

• Balancing simplicity (engineers) vs performance (users)

• Clean and easy to use immediate-mode abstraction
• Directly targets the given API without extra wrappers (e.g. MoltenVK)

• Maximum performance within the interface constraints

• Features specific to a given API cost more
• Can’t automatically benefit on other APIs / platforms

• Work well if they can be implemented cleanly behind the abstraction

Incremental refactoring

• Evolving immediate-mode abstraction over time (since D3D9!)

• Many changes during Metal port, aged reasonably well with Vulkan

PassClear passClear;
passClear.mask = Framebuffer::Mask_Color0;

ctx‐>beginPass(fb, 0, Framebuffer::Mask_Color0, &passClear);
ctx‐>bindProgram(program.get());
ctx‐>bindBuffer(0, globalDataBuffer.get());
ctx‐>bindBufferData(1, ¶ms, sizeof(params));
ctx‐>bindTexture(0, lightMap, SamplerState::Filter_Linear);
ctx‐>draw(geometry, Geometry::Primitive_Triangles, 0, count);
ctx‐>endPass();

“It’s hard to beat the driver”

• A study in tradeoffs

• Seeing great performance despite not being 100% Vulkan-friendly
• Faster CPU dispatch

• Matching (D3D) or exceeding (GLES) GPU performance

• Seeing 2x-3x CPU performance gains across all vendors
• End-to-end render frame, real-world contents

• Mobile test level @ 840 draw calls, single core
• 2.4 GHz Cortex-A73, Mali-G72

• GLES: 38 ms😱

• Vulkan: 13 ms

Best practices
through the lens

of perf/cost tradeoffs

Render passes

• Many complex topics in one
• Load/store actions

• Image layout transitions

• Pipeline barriers

• Automatic vs manual tracking?

• ARM Tutorials: “Appropriate use of render pass attachments”, “Render Subpasses”

Render passes: immediate-mode frame structure

• We explicitly bracket all draw calls into passes

• Specify all information in beginPass() precisely
• A full set of textures to render to (color/depth)

• Which framebuffer textures need to be loaded from memory?

• Which framebuffer textures need to be stored to memory?

• Which framebuffer textures need to be cleared with what initial data?

• Do we need to do MSAA resolve in endPass() and if so, where?

• Lazily create/cache VkRenderPass / VkFramebuffer with optimal setup

PassClear clear;
clear.mask = Framebuffer::Mask_Color0 | Framebuffer::Mask_Depth;
clear.depth = 1.0f;

PassResolve passResolve;
passResolve.mask = Framebuffer::Mask_Color0;
passResolve.target = shadowMap.get();
context->beginPass(shadowMapMSAA.get(), 0, 0, &clear, &passResolve);

Render passes: load/store actions

• Avoid excessive memory bandwidth for tilers when loading/storing RT data
• This is implicit in OpenGL(ES), guided by glClear / glDiscardFramebuffer

• We specify this *explicitly* for *every* render pass

• If you need to clear the target, specify clear action/data
• Do NOT use vkCmdClearColorImage/etc.!

• Examples:
• During main 3D scene pass, we don’t need to load color/depth (use clear instead)

• During main 3D scene pass, we don’t need to store depth

• During post-processing passes, we don’t need to clear or load color attachment

• It’s going to be overwritten with a full-screen triangle anyway – use LOAD_OP_DONT_CARE

Render passes: image layout transitions

• We use the concept of “default” resource state
• For each texture we know what layout it’s “expected” to be in between passes

• For textures with shader access this is SHADER_READ_ONLY

• For textures without shader access this is COLOR_ATTACHMENT_OPTIMAL (or DEPTH)

• For read/write textures this is GENERAL

• Usually frowned upon in DX12, works well for us

• All image layout transitions are performed at the pass boundary
• No “just in time” transitions!

• All image layout transitions are guided by load/store masks
• An image that is not loaded is transitioned from UNDEFINED to COLOR_ATTACHMENT

• Caveat: sometimes disables Transaction Elimination on ARM

• An image that is not stored is kept in COLOR_ATTACHMENT (or DEPTH_ATTACHMENT)

• Partially solves lack of “time travel” (we don’t have a render/frame graph)

Render passes: synchronization

• Use the same load/store metadata to infer synchronization
• 90% optimal in our case

• A texture that is stored is assumed to be accessed in the shader

• Important: dstStageMask=VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
• The common case is that the render pass output is read in fragment shader

• It’s *crucial* that cases when the output is necessary in a different stage are explicit!

• Vertex work for the subsequent pass can be scheduled before the previous pass ends

• This is *really* important for tilers!

Render passes: MSAA resolve

• If there is one texture you should never use STORE_OP_STORE on…
• … it’s MSAA color/depth target that’s technically two textures

• MSAA on mobile is wonderful when done right
• Minimal extra shading cost

• No extra bandwidth cost… when using pResolveAttachments

• No extra memory cost… when using transient attachments

• Correct and fast MSAA render pass specification on mobile includes…
• Color/depth MSAA (4 sample) target

• loadOp = LOAD_OP_CLEAR, storeOp = STORE_OP_DONT_CARE

• Resolved color (1 sample) texture specified with pResolveAttachments

• loadOp = LOAD_OP_DONT_CARE, storeOp = STORE_OP_STORE

• KHR_depth_stencil_resolve if you need depth as well

• Do *NOT* use vkCmdResolveImage

Render passes: transient attachments

• Attachments that aren’t loaded/stored can be transient
• Create image with VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• Allocate from memory type with VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

• Transient lazily allocated attachments may consume no memory on tilers
• This is especially valuable for MSAA targets

• 720p 4x MSAA color + depth = 28 MB

• With on-chip resolve, we never read or write this memory!

• A similar concept exists in Metal; we expose it through Texture usage
• Usage_Render = UsageBit_Shader | UsageBit_Render

• Usage_RenderOnly = UsageBit_Render

• Usage_RenderMemoryless = UsageBit_Render | UsageBit_Memoryless

• Transient render-only texture, has to get rendered in a single pass

Descriptor set management

• Resources are bound to shaders via descriptor sets

• Descriptor sets need to be…
• Allocated

• Updated

• Bound

• Need an efficient management scheme for our simple interface

• ARM Tutorial: “Descriptor and buffer management”

Descriptor set management: interface

• We use slot-based binding model

• This should look familiar and yet it’s not
• Coupled textures and samplers (OpenGL)

• Only two namespaces, buffers and textures

• No per-stage namespaces (constant buffer #3 is bound to the entire pipeline)

• No difference between constant buffers and shader storage buffers

• No difference between read-write (UAV) slots and read slots

• An option to specify constant buffer data

• Works surprisingly well for Metal and Vulkan

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferRw(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);
void bindTexture(unsigned int slot, Texture* texture, SamplerState state);
void bindTextureRw(unsigned int slot, Texture* texture);

Descriptor set management: implementation

• When creating the pipeline, we know ahead of time what slots each stage uses
• This is discovered through shader reflection metadata

• Validate compatibility between stages, e.g. uniform buffer #5 must be uniform in VS & FS

• We build a “perfect” VkDescriptorSetLayout (denote stage usage with stageFlags)

• Note that we use at most 2 sets!
• Buffers and textures

• The guaranteed limit is 4 – fitting “into” the limit is a problem for many Direct3D1x ports

• Some mobile hardware only supports a single combined set in hardware anyway

• All bindResource calls just update dirty masks and resource info

• Before each draw/dispatch we lazily allocate/update descriptor sets

Descriptor set management: allocation

• Descriptor sets are allocated out of pools

• We use a ring buffer of pools
• If the current pool has space, allocate a descriptor in this pool (free-threaded)

• Otherwise, get a pool out of the global “pool of pools” (requires a lock)

• The pools get recycled using deferred reclamation (same as deferred destruction)

• Configuring the pools is not trivial!
• For each pool, need to specify the number of sets and the number of resources

• How do you pick the ratio?

Descriptor set management: allocation policy

• A pool per shader pipeline object
• We know the number of textures/buffers each pipeline uses, can configure pools optimally

• E.g. shadow map opaque pipeline: 1024 sets, 0 textures, 2*1024 buffers

• E.g. scene opaque pipeline: 1024 sets, 8*1024 textures, 3*1024 buffers

• A lot of space wasted on rarely used pipelines (postfx), more expensive to switch pipelines

• One type of pool, configured using worst-case descriptor count
• E.g. one VkDescriptorPool has 1024 sets, 16*1024 textures, 8*1024 buffers

• Simple – just one type of pool!

• A lot of space wasted because the ratio of sets:textures:buffers varies

• Settled on one type of pool, configured for “average” usecase
• sets:textures:buffers ratios determined by collecting data on typical levels

• Simple, little space wasted in common case

• Non-trivial space savings – tens of megabytes on moderate levels

Descriptor set management: binding

• If any resources changed, allocate and update a new descriptor set
• If textures changed but buffers didn’t, only need one set, not two

• Note: when shader pipeline changes, sometimes don’t need to rebind sets
• See “Pipeline Layout Compatibility” section of Vulkan specification

• For us this reduces the number of buffer descriptors we need by ~50% on complex scenes

• Do not use descriptor set copying for partial updates!
• Faster to rewrite the entire descriptor set from scratch

• Optional: use descriptor templates from Vulkan 1.1 to reduce CPU cost
• We do this – can be faster on some desktop drivers

• Optional: can cache descriptor sets between non-consecutive draw calls
• We don’t do this – doesn’t happen that often, and adds complexity

• Important: use dynamic buffer offsets!

Descriptor set management: constant data update

• Most of our per-frame constant data is small and dynamic

• We sub-allocate it from a large buffer
• bindBufferData() allocates from a 512 KB uniform buffer using bump pointer allocation

• If we have more than 512 KB of uniform data per command buffer, allocate multiple buffers

• Instead of allocating a new buffer descriptor every time, use pDynamicOffsets

• Dramatically reduces number of buffer descriptors and improves performance

VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* pDynamicOffsets);

Descriptor set management: constant data update tradeoff

• This implementation leads to dispatch cost tradeoffs…

• Do you pre-upload the uniform buffer data or use bindBufferData?
• bindBufferData has to memcpy into the large buffer – bad!

• bindBufferData doesn’t need a new buffer descriptor – good!

• In practice, the choice is usually obvious
• bindBufferData for one-off constant values – frequent!

• bindBuffer for constant data that’s used across many/most draw calls – rare!

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);

General performance tuning

• The driver is much slimmer than a typical GL driver
• This surfaces things that were trivial/unnoticeable before!

• Don’t call vk* functions unless you need to
• Especially important for creating objects – we cache everything we can

• Still faster to do state filtering (vkCmdBind*) in your code

• Aggressively eliminate cache misses
• Reduce allocations and indirections in your abstraction

• Aggressively eliminate contention
• Use “pool of pools” for any resource caches

• Use lock-free read / locked write cache for pipeline states

• Call most functions through pointers obtained via vkGetDeviceProcAddr
• volk (github.com/zeux/volk) loader does this for us; a few % wins on some drivers

https://github.com/zeux/volk

Conclusion

• Getting good performance out of Vulkan is easy*!
• This doesn’t necessarily require a renderer redesign

• We target 5 graphics APIs and 4 major OpenGL version from the same code

• A lot of the performance advice is cross-platform/vendor

• When in doubt:
• Read vendor performance guides

• Use vendor-provided samples

• Profile!

Thank you!

