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Vulkan best practice for mobile developers
• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

• Multi-platform (Android, Windows, Linux)

• Hardware counters displayed on device (no need for root) with HWCPipe

• In-detail explanations, backed-up with data, of best-practice recommendations

• Guide to using performance profiling tools and analysing the results

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers


Framework



Framework
• Platform independent (Android, Linux and Windows)

• Maintain close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-

Cross)

• Simplify creation of Vulkan objects:

1. VkRenderPass

2. VkFramebuffer

3. VkPipelineLayout

4. VkDescriptorSetLayout

• Load 3D models (glTF 2.0 format)

• Internal scene graph
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Tools



Streamline
Performance Analyzer

Mali GPU support
▪ Analyze and optimize Mali™ GPU 

graphics and compute workloads

▪ Accelerate your workflow using 

built-in analysis templates

Optimize for energy
▪ Move beyond simple frame time 

and FPS tracking 

▪ Monitor overall usage of processor 

cycles and memory bandwidth

Speed up your app

▪ Find out where the system is 

spending the most time

▪ Tune code for cache efficiency

Application event traceNative code profiling

▪ Break performance 

down by function

▪ View cost alongside 

disassembly listing

Arm CPU support
▪ Profile 32-bit and 64-bit apps for 

ARMv7-A and ARMv8-A cores

▪ Tune multi-threading for 

DynamIQ multi-core systems

▪ Annotate software 

workloads

▪ Define logical  event 

channel structure

▪ Trace cross-channel 

task dependencies

Tune your rendering

▪ Identify critical-path GPU 

shader core resources

▪ Detect content inefficiency



Debuggers
RenderDoc, GAPID, and CodeXL

RenderDoc
▪ Supports Windows 7, 8.x, 10, 

Linux, Android, and Stadia for 

capture and replay out of the box.

▪ Very Customizable, embeds the 

python runtime for programmatic 

access to frame captures.

GAPID
▪ Identify rendering issues, such as 

missing objects or object size and 

texture problems.

▪ Inspect the resources loaded by 

the graphics API.

CodeXL
▪ Support for Vulkan GLSL shaders, 

including ISA generation and 

performance statistics.

▪ Supports the Boltzmann driver, 

AMD Radeon R9 Fury, Fury X, Fury 

Nano GPUs, and 6th Generation 

AMD A-series APU processors.



Porting Roblox to Vulkan



What is Roblox?

• Online multiplayer game creation platform

• All content is user generated

• Windows, macOS, iOS, Android, Xbox One

• 100M+ MAU, 2.5M+ CCU



What is Roblox?
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Why Vulkan?

• Lots of performance challenges on Android

• Need maximum performance without tweaking content

• Need modern* GAPI features for current/future rendering projects

• Long term desire to discontinue OpenGL

• We’ve investing in Vulkan for the long term
• Performance, clear driver/hardware mental model

• Unified shader pipeline through SPIRV

• Potential to use on other platforms



Porting to Vulkan

• It took time!
• Started November 2016

• First working version March 2017

• First working version in production November 2017

• Fully live March 2018

• Continuous maintenance and performance tweaks ever since

• Seeing good steady adoption
• March 2018: 17% of our Android userbase (Android 7.0+)

• December 2018: 28% (Android 7.0+)

• February 2019: 23% (Android 7.1+)

• September 2019: 37% (Android 7.1+)



API pandemonium

• We did *not* rewrite the renderer to be “Vulkan-friendly”
• D3D9, D3D11, GL 2/3, GLES 2/3, Metal, Vulkan

• Slowly improving the common rendering interface

• Balancing simplicity (engineers) vs performance (users)

• Clean and easy to use immediate-mode abstraction
• Directly targets the given API without extra wrappers (e.g. MoltenVK)

• Maximum performance within the interface constraints

• Features specific to a given API cost more
• Can’t automatically benefit on other APIs / platforms

• Work well if they can be implemented cleanly behind the abstraction



Incremental refactoring

• Evolving immediate-mode abstraction over time (since D3D9!)

• Many changes during Metal port, aged reasonably well with Vulkan

PassClear passClear;
passClear.mask = Framebuffer::Mask_Color0;

ctx‐>beginPass(fb, 0, Framebuffer::Mask_Color0, &passClear);
ctx‐>bindProgram(program.get());
ctx‐>bindBuffer(0, globalDataBuffer.get());
ctx‐>bindBufferData(1, &params, sizeof(params));
ctx‐>bindTexture(0, lightMap, SamplerState::Filter_Linear);
ctx‐>draw(geometry, Geometry::Primitive_Triangles, 0, count);
ctx‐>endPass();



“It’s hard to beat the driver”

• A study in tradeoffs

• Seeing great performance despite not being 100% Vulkan-friendly
• Faster CPU dispatch

• Matching (D3D) or exceeding (GLES) GPU performance

• Seeing 2x-3x CPU performance gains across all vendors
• End-to-end render frame, real-world contents

• Mobile test level @ 840 draw calls, single core
• 2.4 GHz Cortex-A73, Mali-G72

• GLES: 38 ms😱

• Vulkan: 13 ms



Best practices
through the lens

of perf/cost tradeoffs



Render passes

• Many complex topics in one
• Load/store actions

• Image layout transitions

• Pipeline barriers

• Automatic vs manual tracking?

• ARM Tutorials: “Appropriate use of render pass attachments”, “Render Subpasses”



Render passes: immediate-mode frame structure

• We explicitly bracket all draw calls into passes

• Specify all information in beginPass() precisely
• A full set of textures to render to (color/depth)

• Which framebuffer textures need to be loaded from memory?

• Which framebuffer textures need to be stored to memory?

• Which framebuffer textures need to be cleared with what initial data?

• Do we need to do MSAA resolve in endPass() and if so, where?

• Lazily create/cache VkRenderPass / VkFramebuffer with optimal setup

PassClear clear;
clear.mask = Framebuffer::Mask_Color0 | Framebuffer::Mask_Depth;
clear.depth = 1.0f;

PassResolve passResolve;
passResolve.mask = Framebuffer::Mask_Color0;
passResolve.target = shadowMap.get();
context->beginPass(shadowMapMSAA.get(), 0, 0, &clear, &passResolve);



Render passes: load/store actions

• Avoid excessive memory bandwidth for tilers when loading/storing RT data
• This is implicit in OpenGL(ES), guided by glClear / glDiscardFramebuffer

• We specify this *explicitly* for *every* render pass

• If you need to clear the target, specify clear action/data
• Do NOT use vkCmdClearColorImage/etc.!

• Examples:
• During main 3D scene pass, we don’t need to load color/depth (use clear instead)

• During main 3D scene pass, we don’t need to store depth

• During post-processing passes, we don’t need to clear or load color attachment

• It’s going to be overwritten with a full-screen triangle anyway – use LOAD_OP_DONT_CARE



Render passes: image layout transitions

• We use the concept of “default” resource state
• For each texture we know what layout it’s “expected” to be in between passes

• For textures with shader access this is SHADER_READ_ONLY

• For textures without shader access this is COLOR_ATTACHMENT_OPTIMAL (or DEPTH)

• For read/write textures this is GENERAL

• Usually frowned upon in DX12, works well for us

• All image layout transitions are performed at the pass boundary
• No “just in time” transitions!

• All image layout transitions are guided by load/store masks
• An image that is not loaded is transitioned from UNDEFINED to COLOR_ATTACHMENT

• Caveat: sometimes disables Transaction Elimination on ARM 

• An image that is not stored is kept in COLOR_ATTACHMENT (or DEPTH_ATTACHMENT)

• Partially solves lack of “time travel” (we don’t have a render/frame graph)



Render passes: synchronization

• Use the same load/store metadata to infer synchronization
• 90% optimal in our case

• A texture that is stored is assumed to be accessed in the shader

• Important: dstStageMask=VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
• The common case is that the render pass output is read in fragment shader

• It’s *crucial* that cases when the output is necessary in a different stage are explicit!

• Vertex work for the subsequent pass can be scheduled before the previous pass ends

• This is *really* important for tilers!



Render passes: MSAA resolve

• If there is one texture you should never use STORE_OP_STORE on…
• … it’s MSAA color/depth target that’s technically two textures

• MSAA on mobile is wonderful when done right
• Minimal extra shading cost

• No extra bandwidth cost… when using pResolveAttachments

• No extra memory cost… when using transient attachments

• Correct and fast MSAA render pass specification on mobile includes…
• Color/depth MSAA (4 sample) target

• loadOp = LOAD_OP_CLEAR, storeOp = STORE_OP_DONT_CARE

• Resolved color (1 sample) texture specified with pResolveAttachments

• loadOp = LOAD_OP_DONT_CARE, storeOp = STORE_OP_STORE

• KHR_depth_stencil_resolve if you need depth as well

• Do *NOT* use vkCmdResolveImage



Render passes: transient attachments

• Attachments that aren’t loaded/stored can be transient
• Create image with VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• Allocate from memory type with VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

• Transient lazily allocated attachments may consume no memory on tilers
• This is especially valuable for MSAA targets

• 720p 4x MSAA color + depth = 28 MB

• With on-chip resolve, we never read or write this memory!

• A similar concept exists in Metal; we expose it through Texture usage
• Usage_Render = UsageBit_Shader | UsageBit_Render

• Usage_RenderOnly = UsageBit_Render

• Usage_RenderMemoryless = UsageBit_Render | UsageBit_Memoryless

• Transient render-only texture, has to get rendered in a single pass



Descriptor set management

• Resources are bound to shaders via descriptor sets

• Descriptor sets need to be…
• Allocated

• Updated

• Bound

• Need an efficient management scheme for our simple interface

• ARM Tutorial: “Descriptor and buffer management”



Descriptor set management: interface

• We use slot-based binding model

• This should look familiar and yet it’s not
• Coupled textures and samplers (OpenGL )

• Only two namespaces, buffers and textures

• No per-stage namespaces (constant buffer #3 is bound to the entire pipeline)

• No difference between constant buffers and shader storage buffers

• No difference between read-write (UAV) slots and read slots

• An option to specify constant buffer data

• Works surprisingly well for Metal and Vulkan

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferRw(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);
void bindTexture(unsigned int slot, Texture* texture, SamplerState state);
void bindTextureRw(unsigned int slot, Texture* texture);



Descriptor set management: implementation

• When creating the pipeline, we know ahead of time what slots each stage uses
• This is discovered through shader reflection metadata

• Validate compatibility between stages, e.g. uniform buffer #5 must be uniform in VS & FS

• We build a “perfect” VkDescriptorSetLayout (denote stage usage with stageFlags)

• Note that we use at most 2 sets!
• Buffers and textures

• The guaranteed limit is 4 – fitting “into” the limit is a problem for many Direct3D1x ports

• Some mobile hardware only supports a single combined set in hardware anyway

• All bindResource calls just update dirty masks and resource info

• Before each draw/dispatch we lazily allocate/update descriptor sets



Descriptor set management: allocation

• Descriptor sets are allocated out of pools

• We use a ring buffer of pools
• If the current pool has space, allocate a descriptor in this pool (free-threaded)

• Otherwise, get a pool out of the global “pool of pools” (requires a lock)

• The pools get recycled using deferred reclamation (same as deferred destruction)

• Configuring the pools is not trivial!
• For each pool, need to specify the number of sets and the number of resources

• How do you pick the ratio?



Descriptor set management: allocation policy

• A pool per shader pipeline object
• We know the number of textures/buffers each pipeline uses, can configure pools optimally

• E.g. shadow map opaque pipeline: 1024 sets, 0 textures, 2*1024 buffers

• E.g. scene opaque pipeline: 1024 sets, 8*1024 textures, 3*1024 buffers

• A lot of space wasted on rarely used pipelines (postfx), more expensive to switch pipelines

• One type of pool, configured using worst-case descriptor count
• E.g. one VkDescriptorPool has 1024 sets, 16*1024 textures, 8*1024 buffers

• Simple – just one type of pool!

• A lot of space wasted because the ratio of sets:textures:buffers varies

• Settled on one type of pool, configured for “average” usecase
• sets:textures:buffers ratios determined by collecting data on typical levels

• Simple, little space wasted in common case

• Non-trivial space savings – tens of megabytes on moderate levels



Descriptor set management: binding

• If any resources changed, allocate and update a new descriptor set
• If textures changed but buffers didn’t, only need one set, not two

• Note: when shader pipeline changes, sometimes don’t need to rebind sets
• See “Pipeline Layout Compatibility” section of Vulkan specification

• For us this reduces the number of buffer descriptors we need by ~50% on complex scenes

• Do not use descriptor set copying for partial updates!
• Faster to rewrite the entire descriptor set from scratch

• Optional: use descriptor templates from Vulkan 1.1 to reduce CPU cost
• We do this – can be faster on some desktop drivers

• Optional: can cache descriptor sets between non-consecutive draw calls
• We don’t do this – doesn’t happen that often, and adds complexity

• Important: use dynamic buffer offsets!



Descriptor set management: constant data update

• Most of our per-frame constant data is small and dynamic

• We sub-allocate it from a large buffer
• bindBufferData() allocates from a 512 KB uniform buffer using bump pointer allocation

• If we have more than 512 KB of uniform data per command buffer, allocate multiple buffers

• Instead of allocating a new buffer descriptor every time, use pDynamicOffsets

• Dramatically reduces number of buffer descriptors and improves performance

VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet*   pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t*          pDynamicOffsets);



Descriptor set management: constant data update tradeoff

• This implementation leads to dispatch cost tradeoffs…

• Do you pre-upload the uniform buffer data or use bindBufferData?
• bindBufferData has to memcpy into the large buffer – bad!

• bindBufferData doesn’t need a new buffer descriptor – good!

• In practice, the choice is usually obvious
• bindBufferData for one-off constant values – frequent!

• bindBuffer for constant data that’s used across many/most draw calls – rare!

void bindBuffer(unsigned int slot, Buffer* buffer);
void bindBufferData(unsigned int slot, const void* data, unsigned int size);



General performance tuning

• The driver is much slimmer than a typical GL driver
• This surfaces things that were trivial/unnoticeable before!

• Don’t call vk* functions unless you need to
• Especially important for creating objects – we cache everything we can

• Still faster to do state filtering (vkCmdBind*) in your code

• Aggressively eliminate cache misses
• Reduce allocations and indirections in your abstraction

• Aggressively eliminate contention
• Use “pool of pools” for any resource caches

• Use lock-free read / locked write cache for pipeline states

• Call most functions through pointers obtained via vkGetDeviceProcAddr
• volk (github.com/zeux/volk) loader does this for us; a few % wins on some drivers

https://github.com/zeux/volk


Conclusion

• Getting good performance out of Vulkan is easy*!
• This doesn’t necessarily require a renderer redesign

• We target 5 graphics APIs and 4 major OpenGL version from the same code

• A lot of the performance advice is cross-platform/vendor

• When in doubt:
• Read vendor performance guides

• Use vendor-provided samples

• Profile!



Thank you!


