

What is Roblox?

e Online multiplayer game creation platform

e All content is user generated

e 100M+ MAU, 5M+ CCU

e Windows, macQOS, iOS, Android, Xbox One

e Direct3D 9/11, OpenGL 2/3, OpenGL ES 2/3, Metal, Vulkan

FILE D Y r -7D7:: HOME i MODEL TEST VIEW PLUGINS

EtH©OEE o g x N

il e

SyLock - L
Select Move Scale Rotate Editor = Toolbox Part ul Material Color —— Play Resume Stop Game Team Exit
Duplicate & JoinSurfaces 5 & = +i Anchor i Settings | Test Game
Clipboard Tools Terrain Insert Edit Y Test Settings Team Test

¢y Piratelsland x 7‘ Type X |

s 2

Filterworkspace (Ctrl+Shift=x)
% ~ (@ Workspace
Camera

Terrain

2% SpawnLocation
&% Atollisland
&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

&% cannon

% Chest

&% chest

o Chest

&% cutter

4% Desertedisland
&% Fortlsland
&% Model

&% openchest
& voleanolsland

Filter Properties (Ctrl+Shift=P)

 Appearance

Decoration

v Material

B asphate

B easat

E2 Brick

B cobblestone
ﬁ Concrete
B crackedLava
5 Glacier

. Grass

B8 cround

98 lce

. LeafyGrass

e

2 Limestone
B vud
. Pavement
B Rrock
Bl satt
B sand
B8 sandstone

B slate

Run acommand

¢ RobloxInternal

Explorer

Properties - Terrain "Terrain™

L

Color

W [115,123,107]
I [30.30,37]
I [138,86,62]
[[132,123,90]
M [127,102,63]
[[232,156,74]
[[102,176,234]
M [106,127,63]
W [102,92,59]
[[129,194,224]
[[115,132,74]
[(206,173, 148]
I [52.46,36]

[[148, 148, 140]
I [102,108,111]
[[198, 189, 121]
[[143,126,95]
W [137,90,71]
I (63,127,107

Terrain system: goals

e No baking; any area can change at any point

e Fully 3D; caves, overhangs, bridges

e Scale up toreasonably large landscapes (10+ km* 2)
e Scale down to very small devices (iPad 2)

e Easy to use tools and API

e Rich materials (semantics, not just visuals)

Voxel terrain

e Terrain is built out of voxels
e Voxels are sparse™ and multiresolution®
e Each voxel has a material and occupancy

e All other controls are per material

Voxel representation

e Early experiments with different types of data

e Occupancy over other representations for simplicity

R

Mfdor;a'

o T 1. 0 9rass
@W{\‘Ler
o PERNAL\ Qair

‘—Q‘uc
BAKN NN & aige o
Hor,r;‘tle cquc:\ o(‘CL«Pac—.(g

Voxel storage: grid

e Sparse set of fixed-size chunks
e Each chunk stores a mip pyramid (1*3.. 324 3)
e Top levels can be skipped!

e Streaming mips in/out based on memory pressure

Voxel storage: mips

e Empty/full mip: 1 byte (material)
e Compressed rows: 1 byte (material) per row
e Uncompressed rows: 2 bytes (material + occupancy) per voxel

e Repack dynamically after voxel writes

Mesher: Marching Cubes?

e Non-uniform topology
e Needs tie breaking rules

e Non-intuitive and restrictive vertex placement

Mesher: dual method

e Inspired by Dual Contouring and Naive Surface Nets

e Runs on CPU (carefully optimized)

| | . | I L
| \ O O \ o O
r 7 7 ~ 1Y
7 Y 7 8
W% ° R/ 1%,
4 // . f/-_____- I E//l;/! %ﬁ; o
' i —t
é@ O 0o % o

l
“ | | ROQBLAX

Mesher: dual method

e One vertex per cell

e Neighboring cells are connected with quads

l

I

\

’—‘Cll__
A

.

|

'|

ROBLOX

Mesher: vertex data

e For shading we decided to use 1 material per vertex
o Dominant material based on occupancy from grid points
e Baseline position is computed as an average of edge points
o See Naive Surface Nets
e Normal is computed as an average of triangle normals

o ... but we don't stop there

Mesher: vertex deformation

e Materials define a procedural deformation:
o Shift: pseudo-random offset
o Cubify: lerp to box center
o Quantize: round to a multiple of 1/K
o Barrel: cubify along Y
o ...and more (special math for water, etc.)

e Materials also define soft/hard edges for shading

Subtract Grow

i 2

Smooth Flatten Paint

¥ Brush Settings

=

Base Size

Strength ——)
Pivot Position Bot Cen
Flane k

Snap to Grid

lgnore Water «©

¥ Material Settings

Auto Material

Choose a material to apply

Texture mapping

e Given aunique material per vertex, how do we shade a pixel?

e Sample textures from 3 materials, blend based on barycentrics

e Unclear how to project - perhaps triplanar?

e 3 material samples x 3 triplanar samples x 3 textures = 27 fetches

® ...NO.

Texture mapping: quilting

e Idea: SIGGRAPH 2011, Real-time Image Quilting by Hugh Malan
e For each vertex, we're going to sample material just once

o Total samples: 3 on low quality (albedo), 9 on high quality (PBR)
e We're going to pick a projection plane to minimize distortion

o Not quite triplanar, but can be close enough!

o We pick one of 18 planes and encode plane id in vertex

Texture mapping: detiling

o After projecting position on the UV plane, we apply random xform
o Shift and rotate based on per-vertex seed
o Material controls the transformation

e When all 3 materials are the same, this hides tiling artifacts

Texture mapping: scaling down

o Effectively each of 3 samples can act as:
o Material sample (for 3-material blend)
o Triplanar sample (for blend between material layers)
o Detiling sample (to break up tiling)

e On low-quality we can only use one with largest weight

o This results in sharp seams between materials

Texture mapping: scaling up

e Linear blend reduces contrast and results in unnatural blends

e Height-based blending (fixes blends)

e Histogram-preserving blending (fixes loss of contrast)

LSO

Vertex packing

e Unfortunately we need to store triangle material information

e Experimented with GS, promising results - future is mesh shaders?

// 20 bytes/vertex
Vertex

{

position[];

id; // vertex index (1-3)

normal[’]; // xyz = normal, w = random seed 6

material@[4]; // xyz = layer index (6-?), w = random seed 1
materiali1[4]; // xyz = normal segment (6-17), w = random seed 2

ROBLOX

Draw calls

e On OpenGL ES draw calls are pretty expensive
e All material layers are packed into an atlas or texture array
e Single draw call per chunk
o Nice side effect: material choice doesn't affect performance!
e Minimal setup per draw

o Just need to update one uniform and vertex/index buffers

Level of detail

e We have to vary geometric detail for performance

e \We also don't always have top mip available!

e Use octree to store render representation

e Split leaves into 2”3 when up close, merge leaves when far away

o Leafsizeis 16”3 voxels (typically 500-1000 triangles)

Level of detail: stitches

e Each node uses the meshing algorithm on a voxel mip
e We need to stitch geometry for neighboring chunks together
e |deally, we'd generate triangles to match...

o See "Dual Contouring of Hermite Data"

e ... but thisis expensive and complicated

Level of detail: skirts

e Instead, we generate extra overhang geometry

e Just one extra triangle is enough!

e An extra layer of voxels, patched to produce better skirts

e To avoid artifacts, we apply depth bias to skirt geometry
o This makes sure skirts are only visible in gaps

e This is cheap enough to generate for every chunk

YIVA

WA [

(!

l

((C(TTqdrir

0]

SX

SZ

Base

Level of detail: stitch rendering

e Conveniently, each chunk has up to 3 stitches to render

e ...and Y stitch is almost never used

e Special index buffer layout: [stitchX] [base] [stitchZ] [stitchY]
e Single draw call to render base with any XZ stitches!

e Stitch vertices tagged in vertex data to apply depth bias in VS

Water

e Water is translucent and therefore needs special care...
e We mesh solid-air, solid-water and water-air interfaces
o Done during a single meshing pass
e Water has special material-aware deformer to avoid bulging

e Water geometry is rendered separately

Water rendering

e Scrolling tiled animated normal maps (with detiling)
e Geometric waves
e Underwater fog
e On desktop:
o Screen-space refraction
o Screen-space reflection with 8-tap ray trace

e Future: better shorelines

Grass

e How can we make materials even smarter?
o Future: higher fidelity geometric shaping?
o Present: clutter
e Experimented with card-based and geometric grass

e Geometric grass was noticeably faster on tilers

Grass rendering

e 3-5 vertices per grass blade (level of detail)
e Grass points placed using vertex seeds (stable randomness)
e Very custom shading to "approximate" the look

o Wrap diffuse

o More translucency-related kaelksmath

o Height-based gradient for diffuse / specular

Future work

e Higher fidelity geometry
e Higher fidelity shading
e Better texture mapping

e Scaling beyond 1B voxels

Thank you!

51

