


What is Roblox?

Online multiplayer game creation platform

All content is user generated

100M+ MAU, 5M+ CCU

Windows, macOS, iOS, Android, Xbox One

Direct3D 9/11, OpenGL 2/3, OpenGL ES 2/3, Metal, Vulkan









Terrain system: goals

No baking; any area can change at any point

Fully 3D; caves, overhangs, bridges

Scale up to reasonably large landscapes (10+ km^2)

Scale down to very small devices (iPad 2)

Easy to use tools and API

Rich materials (semantics, not just visuals)



Voxel terrain

Terrain is built out of voxels

Voxels are sparse* and multiresolution*

Each voxel has a material and occupancy

All other controls are per material



Voxel representation

Early experiments with different types of data

Occupancy over other representations for simplicity







Voxel storage: grid

Sparse set of fixed-size chunks

Each chunk stores a mip pyramid (1^3 .. 32^3)

Top levels can be skipped!

Streaming mips in/out based on memory pressure



Voxel storage: mips

Empty/full mip: 1 byte (material)

Compressed rows: 1 byte (material) per row

Uncompressed rows: 2 bytes (material + occupancy) per voxel

Repack dynamically after voxel writes



Mesher: Marching Cubes?

Non-uniform topology

Needs tie breaking rules

Non-intuitive and restrictive vertex placement



Mesher: dual method

Inspired by Dual Contouring and Naive Surface Nets

Runs on CPU (carefully optimized)



Mesher: dual method

One vertex per cell

Neighboring cells are connected with quads



Mesher: vertex data

For shading we decided to use 1 material per vertex

Dominant material based on occupancy from grid points

Baseline position is computed as an average of edge points

See Naive Surface Nets

Normal is computed as an average of triangle normals

... but we don't stop there







Mesher: vertex deformation

Materials define a procedural deformation:

Shift: pseudo-random offset

Cubify: lerp to box center

Quantize: round to a multiple of 1/K

Barrel: cubify along Y

... and more (special math for water, etc.)

Materials also define soft/hard edges for shading





Texture mapping

Given a unique material per vertex, how do we shade a pixel?

Sample textures from 3 materials, blend based on barycentrics

Unclear how to project - perhaps triplanar?

3 material samples x 3 triplanar samples x 3 textures = 27 fetches

... no.



Texture mapping: quilting

Idea: SIGGRAPH 2011, Real-time Image Quilting by Hugh Malan

For each vertex, we're going to sample material just once

Total samples: 3 on low quality (albedo), 9 on high quality (PBR)

We're going to pick a projection plane to minimize distortion

Not quite triplanar, but can be close enough!

We pick one of 18 planes and encode plane id in vertex







Texture mapping: detiling

After projecting position on the UV plane, we apply random xform

Shift and rotate based on per-vertex seed

Material controls the transformation

When all 3 materials are the same, this hides tiling artifacts







Texture mapping: scaling down

Effectively each of 3 samples can act as:

Material sample (for 3-material blend)

Triplanar sample (for blend between material layers)

Detiling sample (to break up tiling)

On low-quality we can only use one with largest weight

This results in sharp seams between materials



Texture mapping: scaling up

Linear blend reduces contrast and results in unnatural blends

Height-based blending (fixes blends)

Histogram-preserving blending (fixes loss of contrast)







Vertex packing

Unfortunately we need to store triangle material information

Experimented with GS, promising results - future is mesh shaders?

// 20 bytes/vertex

struct Vertex 

{ 

    int16_t position[3]; 

    int16_t id;           // vertex index (1-3) 

    uint8_t normal[4];    // xyz = normal, w = random seed 0 

    uint8_t material0[4]; // xyz = layer index (0-?), w = random seed 1 

    uint8_t material1[4]; // xyz = normal segment (0-17), w = random seed 2 

}; 



Draw calls

On OpenGL ES draw calls are pretty expensive

All material layers are packed into an atlas or texture array

Single draw call per chunk

Nice side effect: material choice doesn't affect performance!

Minimal setup per draw

Just need to update one uniform and vertex/index buffers



Level of detail

We have to vary geometric detail for performance

We also don't always have top mip available!

Use octree to store render representation

Split leaves into 2^3 when up close, merge leaves when far away

Leaf size is 16^3 voxels (typically 500-1000 triangles)



Level of detail: stitches

Each node uses the meshing algorithm on a voxel mip

We need to stitch geometry for neighboring chunks together

Ideally, we'd generate triangles to match...

See "Dual Contouring of Hermite Data"

... but this is expensive and complicated



Level of detail: skirts

Instead, we generate extra overhang geometry

Just one extra triangle is enough!

An extra layer of voxels, patched to produce better skirts

To avoid artifacts, we apply depth bias to skirt geometry

This makes sure skirts are only visible in gaps

This is cheap enough to generate for every chunk





Level of detail: stitch rendering

Conveniently, each chunk has up to 3 stitches to render

... and Y stitch is almost never used

Special index buffer layout: [stitchX] [base] [stitchZ] [stitchY]

Single draw call to render base with any XZ stitches!

Stitch vertices tagged in vertex data to apply depth bias in VS



Water

Water is translucent and therefore needs special care...

We mesh solid-air, solid-water and water-air interfaces

Done during a single meshing pass

Water has special material-aware deformer to avoid bulging

Water geometry is rendered separately







Water rendering

Scrolling tiled animated normal maps (with detiling)

Geometric waves

Underwater fog

On desktop:

Screen-space refraction

Screen-space reflection with 8-tap ray trace

Future: better shorelines







Grass

How can we make materials even smarter?

Future: higher fidelity geometric shaping?

Present: clutter

Experimented with card-based and geometric grass

Geometric grass was noticeably faster on tilers







Grass rendering

3-5 vertices per grass blade (level of detail)

Grass points placed using vertex seeds (stable randomness)

Very custom shading to "approximate" the look

Wrap diffuse

More translucency-related hacksmath

Height-based gradient for diffuse / specular





Future work

Higher fidelity geometry

Higher fidelity shading

Better texture mapping

Scaling beyond 1B voxels



Thank you!

51


